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Abstract
This paper revisits the problem of learning a k-CNF
Boolean function from examples, for fixed k, in
the context of online learning under the logarith-
mic loss. We give a Bayesian interpretation to one
of Valiant’s classic PAC learning algorithms, which
we then build upon to derive three efficient, on-
line, probabilistic, supervised learning algorithms
for predicting the output of an unknown k-CNF
Boolean function. We analyze the loss of our meth-
ods, and show that the cumulative log-loss can be
upper bounded by a polynomial function of the size
of each example.

1 Introduction
In 1984, Leslie Valiant introduced the notion of Probably Ap-
proximately Correct (PAC) learnability, and gave three im-
portant examples of some non-trivial concept classes that
could be PAC learnt given nothing more than a sequence of
positive examples drawn from an arbitrary IID distribution
[Valiant, 1984]. One of these examples was the class of k-
CNF Boolean functions, for fixed k. Valiant’s approach relied
on a polynomial time reduction of this problem to that of PAC
learning the class of monotone conjunctions. In this paper, we
revisit the problem of learning monotone conjunctions from
the perspective of universal source coding, or equivalently,
online learning under the logarithmic loss. In particular we
derive three new online, probabilistic prediction algorithms
that: (i) learn from both positive and negative examples; (ii)
avoid making IID assumptions; (iii) suffer low logarithmic
loss for arbitrary sequences of examples; (iv) run in poly-
nomial time and space. This work is intended to comple-
ment previous work on concept identification [Valiant, 1984]
and online learning under the 0/1 loss [Littlestone, 1988;
Littlestone and Warmuth, 1994].

The main motivation for investigating online learning un-
der the logarithmic loss is the fundamental role it plays
within information theoretic applications. In particular, we
are interested in prediction methods that satisfy the fol-
lowing power desiderata, i.e. methods which: (p) make
probabilistic predictions; (o) are strongly online; (w) work
well in practice; (e) are efficient; and (r) have well under-
stood regret/loss properties. Methods satisfying these prop-

erties can be used in a number of principled and interesting
ways: for example, data compression via arithmetic encod-
ing [Witten et al., 1987], compression-based clustering [Cili-
brasi and Vitányi, 2005] or classification [Frank et al., 2000;
Bratko et al., 2006], and information theoretic reinforcement
learning [Veness et al., 2011; 2015]. Furthermore, it is pos-
sible to combine such online, log-loss predictors using vari-
ous ensemble methods [Veness et al., 2012b; Mattern, 2013].
The ability to rapidly exploit deterministic underlying struc-
ture such as k-CNF relations has the potential to improve all
the aforementioned application areas, and brings the universal
source coding literature in line with developments originating
from the machine learning community.

Our contribution in this paper stems from noticing that
Valiant’s method can be interpreted as a kind of MAP model
selection procedure with respect to a particular family of pri-
ors. In particular, we show that given n positive examples and
their associated d-dimensional binary input vectors, it is pos-
sible to perform exact Bayesian inference over the 2d possible
monotone conjunction hypotheses in time O(nd) and space
O(d) without making IID assumptions. Unfortunately, these
desirable computational properties do not extend to the case
where both positive and negative examples are presented; we
show that in this case exact inference is #P-complete. This re-
sult motivated us to develop a hybrid algorithm, which uses a
combination of Bayesian inference and memorization to con-
struct a polynomial time algorithm whose loss is bounded by
O(d2) for the class of monotone conjunctions. Furthermore,
we show how to trade constant loss for logarithmic cumu-
lative loss to get a more practical algorithm, whose loss is
bounded by O(d log n). We also give an alternative method,
based on the WINNOW algorithm [Littlestone, 1988] for 0/1
loss, which has better theoretical properties in cases where
many of the d Boolean inputs are irrelevant. Finally, similarly
to Valiant, we describe how to combine our algorithms with
a reduction that (for fixed k) enables the efficient learning of
k-CNF Boolean functions from examples.

2 Preliminaries
Notation. A Boolean variable x is an element of B :=
{⊥,>} = {0, 1}. We identify false ⊥ with 0 and true >
with 1, since it allows us to use Boolean functions as like-
lihood functions for deterministically generated data. We
keep the boolean operator notation whenever more sugges-



tive. The unary not operator is denoted by ¬, and is defined as
¬ : 0 7→ 1; 1 7→ 0 (¬x = 1− x). The binary conjunction and
disjunction operators are denoted by ∧ and ∨ respectively,
and are given by the maps ∧ : (1, 1) 7→ 1; or 0 otherwise
(x ∧ y = x · y). and ∨ : (0, 0) 7→ 0; or 1 otherwise
(x ∨ y = max{x, y}). A literal is a Boolean variable x or
its negation ¬x; a positive literal is a non-negated Boolean
variable. A clause is a finite disjunction of literals. A mono-
tone conjunction is a conjunction of zero or more positive
literals. For example, x1 ∧ x3 ∧ x6 is a monotone conjunc-
tion, while ¬x1 ∧ x3 is not. We adopt the usual convention
with conjunctions of defining the zero literal case to be vac-
uously true. The power set of a set S is the set of all subsets
of S, and will be denoted by P(S). For convenience, we fur-
ther define Pd := P({1, 2, . . . , d}). We also use the Iverson
bracket notation JP K, which given a predicate P , evaluates to
1 if P is true and 0 otherwise. We also use the notation x1:n
and x<n to represent the sequences of symbols x1x2 . . . xn
and x1x2 . . . xn−1 respectively. Furthermore, base two is as-
sumed for all logarithms in this paper. Finally, we use the
notation ai to index the ith component of a Boolean vector
a ∈ Bd.

Problem Setup. We consider an online, sequential, binary,
probabilistic prediction task with side information. At each
time step t ∈ N, a d-dimensional Boolean vector of side in-
formation at ≡ (a1t , ..., a

d
t ) ∈ Bd is presented to a proba-

bilistic predictor ρt : Bd → (B → [0, 1]), which outputs a
probability distribution over B. A label xt ∈ B is then re-
vealed, with the predictor suffering an instantaneous loss of
`t := − log ρt(xt; at), with the cycle continuing ad infinitum.
It will also prove convenient to introduce the joint distribu-
tion ρ(x1:n; a1:n) :=

∏n
t=1 ρt(xt; at), which lets us express

the cumulative loss Ln(ρ) in the form

Ln(ρ) :=

n∑
i=1

`t = − log ρ(x1:n; a1:n).

We later use the above quantity to analyze the theoretical
properties of our technique. As is usual with loss or regret
based approaches, our goal will be to construct a predictor ρ
such that Ln(ρ)/n → 0 as n → ∞ for an interesting class
of probabilistic predictorsM. The focus of our attention for
the remainder of this paper will be on the class of monotone
conjunctions.

Brute force Bayesian learning. Consider the monotone
conjunction hS(at) :=

∧
i∈S a

i
t for some S ∈ Pd, clas-

sifying at ∈ Bd as hS(at) ∈ B. This can be extended
to the function hS : Bn×d → Bn that returns the vector
hS(a1:n) := (hS(a1), ..., hS(an)). One natural Bayesian ap-
proach to learning monotone conjunctions would be to place
a uniform prior over the set of 2d possible deterministic pre-
dictors that are monotone conjunctions of the d Boolean input
variables. This gives the Bayesian mixture model

ξd(x1:n; a1:n) :=
∑
S∈Pd

1

2d
νS(x1:n; a1:n), (1)

where νS(x1:n; a1:n) := JhS(a1:n) = x1:nK is the deter-
ministic distribution corresponding to hS . Note that when
S = {}, the conjunction

∧
i∈S a

i
t is vacuously true. From

here onwards, we will say hypothesis hS generates x1:n if
hS(a1:n) = x1:n. For sequential prediction, the predic-
tive probability ξd(xt|x<t; a1:t) can be obtained by com-
puting the ratio of the marginals, that is ξd(xt|x<t; a1:t) =
ξd(x1:t; a1:t) / ξd(x<t; a<t). Note that this form of the pre-
dictive distribution is equivalent to using Bayes rule to explic-
itly compute the posterior weight for each S, and then taking
a convex combination of the instantaneous predictions made
by each hypothesis. The loss of this approach for an arbitrary
sequence of data generated by some hS∗ for S∗ ∈ Pd, can be
upper bounded by

Ln(ξd) := − log ξd(x1:n; a1:n)

= − log
∑
S∈Pd

1
2d

JhS(a1:n) = x1:nK

≤ − log 1
2d

JhS∗(a1:n) = x1:nK = d.

Of course the downside with this approach is that a naive
computation of Equation 1 takes time O(n 2d). Indeed one
can show that no polynomial-time algorithm in d for ξd exists
(assuming P6=NP).

Theorem 1 (ξd is #P-complete). Computing the function
f : {0, 1}n×d → {0, . . . , 2d} defined as f(a1:n) :=
2dξd(01:n; a1:n) is #P-complete.

We prove hardness by a two-step reduction: counting in-
dependent sets, known to be #P-hard, to computing the cardi-
nality of a union of power sets to computing ξd.

Definition 2 (UPOW). Given a list of n subsets S1, . . . ,Sn
of {1, . . . , d}, compute A := |P(S1) ∪ · · · ∪ P(Sn)|, i.e. the
size of the union of the power sets of S1, . . . ,Sn.

Lemma 3 (UPOW→ ξd). If at is defined as the d-
dimensional characteristic bit vector describing the elements
in St, i.e. ait := Ji ∈ StK, then A = 2d[1− ξd(01:n|a1:n)].

Proof. Since hS(at)=1 iff S⊆St iff S∈P(St) we have

JhS(a1:n) = 01:nK ⇐⇒
n∧
t=1

[hS(at) = 0]

⇐⇒ ¬∃t : S ∈ P(St) ⇐⇒ S 6∈ P(S1)∪ ...∪P(Sn)

which implies
∑
S∈Pd νS(01:n|a1:n) = 2d −A.

The intuition behind Lemma 3 is that since ξd uses a uni-
form prior over Pd, the number of hypotheses consistent
with the data is equal to 2dξd(01:n|a1:n), and therefore the
number of hypotheses inconsistent with the data is equal to
2d[1 − ξd(01:n|a1:n)]. One can easily verify that the set of
hypotheses inconsistent with a single negative example is
It := P

({
i ∈ {1, . . . , d} : Jait = 1K

})
, hence the set of hy-

potheses inconsistent with the data is equal to |∪nt=1It|.
Theorem 4 (IS→UPOW, Brendan McKay, private communi-
cation). UPOW is #P-hard.



Proof. Let G = (V,E) be an undirected graph with vertices
V = {1, ..., d} and edges E = {e1, ..., en}, where edges are
e = {v, w} with v, w ∈ V and v 6= w. An independent set I
is a set of vertices no two of which are connected by an edge.
The set of independent sets is IS := {I ⊆ V : ∀e ∈ E : e 6⊆
I}. It is known that counting independent sets, i.e. computing
|IS| is #P-hard [Vadhan, 2001].

We now reduce IS to UPOW: Define St := V \ et for
t ∈ {1, ..., n} and consider any W ⊆ V and its complement
W = V \W . Then

W 6∈ IS ⇐⇒ ∃e ∈ E : e ⊆W ⇐⇒ ∃t : et ⊆W
⇐⇒ ∃t :W ⊆ St ⇐⇒ ∃t :W ∈ P(St)
⇐⇒ W ∈ P(S1) ∪ ... ∪ P(Sn).

Since set-complement is a bijection and there are 2|V | possi-
ble W , this implies |IS| + |P(S1) ∪ ... ∪ P(Sn)| = 2|V |.
Hence an efficient algorithm for computing |P(S1) ∪ ... ∪
P(Sn)| would imply the existence of an efficient algorithm
for computing |IS|.

Proof. of Theorem 1. Lemma 3 and Theorem 4 show that
f is #P-hard. What remains to be shown is that f is in #P .
First consider UPOW function u : Pnd → {0, ..., 2d} defined
as u(S1, ...,Sd) := A. With identification {0, 1}d ∼= Pd via
ait = Ji ∈ StK and St = {i : ait = 1}, Lemma 3 shows that
f(a1:n)+u(S1, ...,Sn) = 2d. Since S ∈ P(S1)∪ ...∪P(Sn)
iff ∃t : S ∈ P(St) iff ∃t : S ⊆ St, the non-deterministic
polynomial time algorithm “Guess S ∈ Pd and accept iff ∃t :
S ⊆ St” has exactly A accepting paths, hence u is in #P .
Since this algorithm has 2d paths in total, swapping accepting
and non-accepting paths shows that also f is in #P .

One interesting feature of our reduction was that we only
required a sequence of negative examples. As we shall see in
Section 3, exact Bayesian inference is tractable if only posi-
tive examples are provided. Finally, one can also show that
the Bayesian predictor ξd obtains the optimal loss.

Proposition 5. There exists a sequence of side information
a1:2d ∈ B2

d×d such that for any probabilistic predictor
ρt : Bd → (B → [0, 1]), there exists an S ∈ Pd such
that hS would generate a sequence of targets that would give
L2d(ρ) ≥ d.

Proof. Consider the sequence of side information a1:2d ∈
B2d×d, where ait is defined to be the ith digit of the binary
representation of t, for all 1 ≤ t ≤ 2d. As

|{x1:2d : x1:2d is generated by an S ∈ Pd}| = 2d, (2)

to have L2d(ρ) < ∞ for all x1:2d , we need ρ(x1:2d) > 0
for each of the 2d possible target strings, which implies that
L2d(ρ) ≥ d.

Memorization. As a further motivating example, it is in-
structive to compare the exact Bayesian predictor to that of
a naive method for learning monotone conjunctions that sim-
ply memorizes the training instances, without exploiting the

logical structure within the class. To this end, consider the
sequential predictor that assigns a probability of

md(xn|x<n; a1:n) =
{

Jxn= l(a1:n, x<n)K if an∈{at}n−1t=1
1
2 otherwise

to each target, where l(a1:n, x<n) returns the value of xt for
some 1 ≤ t ≤ n − 1 such that an = at. Provided the data
is generated by some hS with S ∈ Pd, the loss of the above
memorization technique is easily seen to be at most 2d. This
follows since an excess loss of 1 bit is suffered whenever a
new ak is seen, and there are at most 2d distinct inputs (of
course no loss is suffered whenever a previously seen ak is
repeated). While both memorization and the Bayes predictor
suffer a constant loss that is independent of the number of
training instances, the loss of the memorization technique is
exponentially larger as a function of d.

3 Exact Bayesian learning of monotone
conjunctions from positive examples

We now show how exact Bayesian inference over the class
of monotone conjunctions can be performed efficiently, pro-
vided learning only occurs from positive examples x1:n ≡
11:n. Using the generalized distributive law [Aji and
McEliece, 2000] we derive an alternative form of Equation 1
that can be straightforwardly computed in time O(nd).
Proposition 6. For all n, d ∈ N, for all a1:n ∈ Bn×d, then

ξd(11:n; a1:n) =

d∏
i=1

(
1

2
+

1

2

t
n∧
t=1

ait

|)
.

Proof. Consider what happens when the expression
d∏
i=1

(
1

2
+

1

2

t
n∧
t=1

ait

|)
is expanded. We get a sum containing 2d terms, that can be
rewritten as∑
S∈Pd

1

2d

t∧
i∈S

n∧
t=1

ait

|

=
∑
S∈Pd

1

2d
JhS(a1:n) = 11:nK

= ξd(11:n; a1:n).

where the second equality follows from Equation 1 and the
first from

νS(11:n|a1:n) = JhS(a1:n) = 11:nK

=

n∧
t=1

hS(at) =

n∧
t=1

∧
i∈S

ait =
∧
i∈S

n∧
t=1

ait.

On MAP model selection from positive examples. If we
further parametrize the right hand side of Proposition 6 by
introducing a hyper-parameter α ∈ (0, 1) to give

ξαd (11:n; a1:n) :=

d∏
i=1

(
(1− α) + α

t
n∧
t=1

ait

|)
, (3)

we get a family of tractable Bayesian algorithms for learn-
ing monotone conjunctions from positive examples. The



α parameter controls the bias toward smaller or larger for-
mulas; smaller formulas are favored if α < 1

2 , while
larger formulas are favored if α > 1

2 , with the expected
formula length being αd. If we denote the prior over
S by wα(S) := α|S|(1 − α)d−|S|, we get the mixture
ξαd (x1:n; a1:n) =

∑
S∈Pd wα(S)νS(x1:n; a1:n). From this

we can read off the maximum a posteriori (MAP) model

S ′n := arg max
S∈Pd

wα(S |x1:n; a1:n)

= arg max
S∈Pd

wα(S) νS(x1:n|a1:n)

under various choices of α. For positive examples (i.e.
x1:n = 11:n), this can be rewritten as

S ′n = arg max
S∈Pd

wα(S)

t∧
i∈S

n∧
t=1

ait

|

.

For α > 1
2 , the MAP model S ′n at time n is unique, and is

given by

S ′n =

{
i ∈ {1, . . . , d} :

n∧
t=1

ait

}
. (4)

For α = 1
2 , a MAP model is any subset of S ′n as defined

by Equation 4. For α < 1
2 , the MAP model is {}. Finally,

we remark that the above results allow for a Bayesian inter-
pretation of Valiant’s algorithm for PAC learning monotone
conjunctions. His method, described in Section 5 of [Valiant,
1984], after seeing n positive examples, outputs the concept∧
i∈S′n

xi; in other words, his method can be interpreted as
doing MAP model selection using a prior belonging to the
above family when α > 1

2 .

A Heuristic Predictor. Next we discuss a heuristic predic-
tion method that incorporates Proposition 6 to efficiently per-
form Bayesian learning on only the positive examples. Con-
sider the probabilistic predictor ξ+d defined by

ξ+d (xn|x<n; a1:n) :=
ξd(x

+
<nxn; a

+
<nan)

ξd(x
+
<n; a

+
<n)

, (5)

where we denote by a+<n the subsequence of a<n formed by
deleting the ak where xk = 0, for 1 ≤ k ≤ n− 1. Similarly,
x+<n denotes to the subsequence formed from x<n by deleting
the xk where xk = 0. Note that since ξd(x+<n0; a

+
<nan) =

ξd(x
+
<n; a

+
<n)

(
1− ξd(1|x+<n; a+<nan)

)
, Equation 3 can be

used to efficiently compute Equation 5. To further save com-
putation, the values of the

∧n
t=1 a

i
t terms can be incrementally

maintained using O(d) space. Using these techniques, each
prediction can be made inO(d) time. Of course the main lim-
itation with this approach is that it ignores all of the informa-
tion contained within the negative instances. It is easy to see
that this has disastrous implications for the loss. For example,
consider what happens if a sequence of n identical negative
instances are supplied. Since no learning will ever occur, a
positive constant loss will be suffered at every timestep, lead-
ing to a loss that grows linearly in n. This suggests that some
form of memorization of negative examples is necessary.

Discussion. There are many noteworthy model classes (for
example, see the work of Willems, Shamir, Erven, Koolen,
Gyorgi, Veness et al 1995; 1996; 1997; 1999; 2007; 2011;
2012a; 2012; 2013) in which it is possible to efficiently per-
form exact Bayesian inference over large discrete spaces.
The common theme amongst these techniques is the careful
design of priors that allow for the application of either the
generalized distributive law [Aji and McEliece, 2000] and/or
dynamic programming to avoid the combinatorial explosion
caused by naively averaging the output of many models.

4 Three efficient, low loss algorithms
We now apply the ideas from the previous sections to con-
struct an efficient online algorithm whose loss is bounded by
O(d2). The main idea is to extend the heuristic predictor
so that it simultaneously memorizes negative instances while
also favoring predictions of 0 in cases where the Bayesian
learning component of the model is unsure. The intuition is
that by adding memory, there can be at most 2d times where
a positive loss is suffered. Moving the α parameter closer
towards 1 causes the Bayesian component to more heavily
weigh the predictions of the longer Boolean expressions con-
sistent with the data, which has the effect of biasing the pre-
dictions more towards 0 when the model is unsure. Although
this causes the loss suffered on positive instances to increase,
we can show that this effect is relatively minor. Our main
contribution is to show that by setting α = 2−d/2

d

, the loss
suffered on both positive and negative instances is balanced
in the sense that the loss can now be upper bounded byO(d2).

Algorithm. The algorithm works very similarly to the pre-
viously defined heuristic predictor, with the following two
modifications: firstly, the set of all negative instances is in-
crementally maintained within a set A, with 0 being pre-
dicted deterministically if the current negative instance has
been seen before; secondly, the ξd terms in Equation 5 are
replaced with ξαd , with α = 2−d/2

d

. More formally,

ζd(xt|x<t; a1:t) :=

{
1− xt if at ∈ A;

ξαd (x
+
<txt;a

+
<tat)

ξαd (x
+
<t;a

+
<t)

otherwise. (6)

Pseudocode is given in Algorithm 1. The algorithm begins
by initializing the weights and the set of negative instancesA.
Next, at each time step t, a distribution pt(·; at) over {0, 1}
is computed. If at has previously been seen as a negative ex-
ample, the algorithm predicts 0 deterministically. Otherwise
it makes its prediction using the previously defined Bayesian
predictor (with α = 2−d/2

d

) that is trained from only posi-
tive examples. The justification for Line 7 is as follows: First
note thatwi is always equal to the conjunction of the ith com-
ponent of the inputs corresponding to the positive examples
occurring before time t, or more formally

wi =

t−1∧
τ=1:aτ 6∈A

aτ ,

which by Equation 3 implies

ξαd (x
+
<t; a

+
<t) =

d∏
i=1

[(1− α) + αwi].



Algorithm 1 ζd(x1:n; a1:n)
1: wi ← 1 for 1 ≤ i ≤ d
2: A ← {}; α← 2−d/2

d

; r ← 1
3: for t = 1 to n do
4: Observe at
5: if at ∈ A then
6: pt(1; at)← 0; pt(0; at)← 1

7: else pt(1; at)←
∏d
i=1

(1−α)+αwiait
(1−α)+αwi

8: pt(0; at)← 1− pt(1; at)
9: endif

10: Observe xt and suffer a loss of − log pt(xt; at)
11: if xt = 1 then
12: for i = 1 to d do wi ← wi a

i
t end for

13: else A ← A∪ {at}
14: endif
15: r ← pt(xt; at)r
16: end for
17: return r

Similarly ξαd (x
+
<t1; a

+
<tat) =

∏d
i=1[(1−α)+αwiait], which

by Equation 6 for at /∈ A implies

ζd(xt = 1|x<t; a1:t) =
∏d
i=1[(1−α) + αwia

i
t]∏d

i=1[(1−α) + αwi]
= pt(1; at).

Trivially pt(xt; at) = 1 − xt = ζd(xt|x<t; a1:t) for at ∈ A
from Line 6. After the label is revealed and a loss is suf-
fered, the algorithm either updates A to remember the nega-
tive instance or updates its weightswi, with the cycle continu-
ing. Overall Algorithm 1 requiresO(nd) space and processes
each example in O(d) time.

Analysis. We now analyze the cumulative log-loss when
using ζd in place of an arbitrary monotone conjunction corre-
sponding to some S∗ ∈ Pd.

Lemma 7. For all d ∈ N \ {1}, − log
(
1− 2−d/2

d
)
≤ d.

Proof. We have that

− ln(1− e−d/e
d

) ≤ − ln

(
1− 1

1 + d/ed

)
= ln

1 + d/ed

d/ed
= d+ ln

(
1

d
+

1

ed

)
≤ d. (7)

The first bound follows from e−x ≤ 1
1+x . The equalities are

simple algebra. The last bound follows from 1
d + 1

ed
≤ 1 for

d ≥ 2. (A similar lower bound − ln(1− e−d/e
d

) ≥ − ln(1−
(1 − d/ed)) = d − ln d shows that the bound is rather tight
for large d). Substituting d ; d ln 2 in (7) and dividing by
ln 2 proves the lemma.

Theorem 8. If x1:n is generated by a hypothesis hS∗ such
that S∗ ∈ Pd then for all n ∈ N, for all d ∈ N \ {1}, for all
x1:n ∈ Bn, for all a1:n ∈ Bn×d, we have that Ln(ζd) ≤ 2d2.

Proof. We begin by decomposing the loss into two terms, one
for the positive and one for the negative instances.

Ln(ζd) =
n∑
t=1

− log ζd(xt|x<t; a1:t)

=
∑
t∈[1,n]

s.t. xt=1

− log ζd(xt = 1|x<t; a1:t)

+
∑
t∈[1,n]

s.t. xt=0

− log ζd(xt = 0|x<t; a1:t)

=
∑
t∈[1,n]

s.t. xt=1

− log
ξαd (x

+
1:t; a

+
1:t)

ξαd (x
+
<t; a

+
<t)

+
∑
t∈[1,n]

s.t. xt=0

− log ζd(xt = 0|x<t; a1:t)

= − log ξαd (x
+
1:n; a

+
1:n) +

∑
t∈[1,n]

s.t. xt=0

− log ζd(xt = 0|x<t; a1:t),

where we have used the notation [1, d] := {1, 2, . . . , d}. The
final step follows since the left summand telescopes. Next we
will upper bound the left and right summands separately. For
α ∈ (0.5, 1), we have for the left term that

− log ξαd (x
+
1:n; a

+
1:n) ≤ − log

(
α|S

∗|(1− α)d−|S
∗|
)

≤ −d log(1− α). (8)

Now, let U :=
{
t ∈ [1, n] : xt = 0 ∧

∧t−1
i=1(at 6= ai)

}
denote the set of time indices where a particular negative in-
stance is seen for the first time and let

Dt :=

{
i ∈ [1, d] :

t−1∧
τ=1

(
¬xτ ∨ aiτ

)}
(9)

denote the indices of the variables not ruled out from the pos-
itive examples occurring before time t. Given these defini-
tions, we have that

ξαd (x
+
<t; a

+
<t)

=
∑
S∈Pd

α|S|(1− α)d−|S|
q
hS(a

+
<t) = x+<t

y

=
∑

S∈P(Dt)

α|S|(1− α)d−|S|

= (1− α)d−|Dt|
∑

S∈P(Dt)

α|Dt|(1− α)|Dt|−|S|

= (1− α)d−|Dt|. (10)

and similarly for t ∈ U
ξαd (x

+
<t0; a

+
<ta

+)

=
∑
S∈Pd

α|S|(1− α)d−|S|
q
hS(a

+
<tat) = x+<t0

y
(11)

=
∑

S∈P(Dt)

α|S|(1− α)d−|S| JhS(at) = 0K

≥ α|Dt|(1− α)d−|Dt|.
The last inequality follows by dropping all terms in the sum
except for the term corresponding the maximally sized con-
junction

∧
t∈Dt xt, which must evaluate to 0 given at, since



S∗ ⊆ Dt and t ∈ U . Using the above, we can now upper
bound the right term∑

t∈[1,n]
s.t. xt=0

− log ζd(xt = 0|x<t; a1:t)

(a)
=

∑
t∈U
− log

ξαd (x
+
<t0; a

+
<ta

+)

ξαd (x
+
<t; a

+
<t)

(b)
≤

∑
t∈U
− logα|Dt|

(c)
≤

∑
t∈U
−d logα (d)

≤ − d 2d logα. (12)

Step (a) follows from the definition of ζd and U (recall that a
positive loss occurs only the first time an input vector is seen).
Step (b) follows from Equations 10 and 11. Step (c) follows
since |Dt| ≤ d by definition. Step (d) follows since there are
at most 2d distinct Boolean vectors of side information.

Now, by picking α = 2−d/2
d

, we have from Equation 8
and Lemma 7 that− log ξαd (x

+
1:n; a

+
1:n) ≤ d2. Similarly, from

Equation 12 we have that∑
t∈[1,n]

s.t. xt=0

− log ζd(xt = 0|x<t; a1:t) ≤ −d 2d log 2−d/2
d

= d2.

Thus by summing our previous two upper bounds, we get

Ln(ζd) = − log ξαd (x
+
1:n; a

+
1:n)

+
∑
t∈[1,n]

s.t. xt=0

− log ζd(xt = 0|x<t; a1:t) ≤ 2d2.

A better space/time complexity tradeoff. Although the
loss of Algorithm 1 is no more than 2d2 (and independent of
n), a significant practical drawback is its O(nd) space com-
plexity. We now present an alternative algorithm which re-
duces the space complexity to O(d), at the small price of in-
creasing the worst case loss to no more than O(d log n). The
main intuition for our next algorithm follows from the loss
analysis of Algorithm 1. Our proof of Theorem 8 led to a
choice of α = 2−d/2

d

, which essentially causes each proba-
bilistic prediction to be largely determined by the prediction
made by the longest conjunction consistent with the already
seen positive examples. This observation led us to consider
Algorithm 2, which uses a smoothed of this. More formally,

πd(xt|x<t; a1:t) := t
t+1

t ∧
i∈Dt

ait = xt

|

+ 1
t+1

t ∧
i∈Dt

ait 6= xt

|

,

where Dt denotes the indices of the variables not ruled out
from the positive examples occurring before time n. Pseu-
docode for implementing this procedure in O(d) time per it-
eration, using O(d) space, is given in Algorithm 2. The set
D incrementally maintains the set Dt. Compared to Algo-
rithm 1, the key computational advantage of this approach is
that it doesn’t need to remember the negative instances. We
next upper bound the loss of Algorithm 2.
Theorem 9. If x1:n is generated by a hypothesis hS∗ such
that S∗ ∈ Pd, then for all n ∈ N, for all d ∈ N, for all
x1:n ∈ Bn, for all a1:n ∈ Bn×d, we have that Ln(πd) ≤
(d+ 1) log(n+ 1).

Algorithm 2 πd(x1:n; a1:n)
1: D ← {1, 2, . . . , d}; r ← 1
2: for t = 1 to n do
3: Observe at
4: if

∏
i∈D a

i
t = 1

5: then pt(1; at) := t/(t+1); pt(0; at) := 1/(t+1)
6: else pt(1; at) := 1/(t+ 1); pt(0; at) := t/(t+ 1)
7: endif
8: Observe xt and suffer a loss of − log pt(xt; at).
9: if xt = 1 then D ← D \ {i ∈ {1, . . . , d} : ait = 0}

endif
10: r ← pt(xt; at) r
11: end for
12: return r

Proof. As x1:n is generated by some hS∗ where S∗ ∈ Pd,
we have that Ln(πd) = − log πd(x1:n; a1:n). We break the
analysis of this term into two cases. At any time 1 ≤ t ≤
n, we have either: Case (i):

∧
i∈D a

i
t = >, which implies

hS(at) = 1 for all S ⊆ D = Dt. As the data is generated by
some hS∗ , we must have S∗ ⊆ Dt and therefore xt = 1, so a
loss of − log t

t+1 is suffered. Case (ii):
∧
i∈D a

i
t = ⊥, where

one of two situations occur: a) if xt = 0 we suffer a loss of
− log t

t+1 ; otherwise b) we suffer a loss of− log(1/(t+1)) =
log(t+1) and at least one element inD gets removed. Notice
that as the set D is initialized with d elements, case b) can
only occur at most d times given any sequence of data.

Finally, notice that Case (ii b) contributes at most at d times
log(n+ 1) to the loss. On the other hand, log t+1

t is suffered
for each t of case (i) and (ii a), which can be upper bounded by∑n
t=1 log

t+1
t = log(n + 1). Together they give the desired

upper bound (d+ 1) log(n+ 1).

We also remark that Algorithm 2 could have been defined
so that pt(1; at) = 1 whenever

∧
i∈A a

i
t = 1. The reason we

instead predicted 1 with probability t/(t+ 1) is that it allows
Algorithm 2 to avoid suffering an infinite loss if the data is
not generated by some monotone conjunction. If however we
are prepared to assume the realizable case, one can modify
Algorithm 2 so as to also have finite cumulative loss for any
possible infinite sequence of examples. First define

T −n :=

{
t ∈ [1, n] : xt = 0 ∧

(∏
i∈D

ait = 0

)}
and

T +
n :=

{
t ∈ [1, n] : xt = 1 ∧

(∏
i∈D

ait = 0

)}
.

Next we change the probabilities assigned in Line 5 to

pt(1; at) = 1, pt(0; at) = 0

and in Line 6 to

pt(1; at) =
1

(n−t + 1)2
, pt(0; at) =

n−t (n
−
t + 2)

(n−t + 1)2

where n−t := |T −t−1|+ 1. If we denote this variant by π′d, we
can show the following theorem.



Theorem 10. If x1:∞ ∈ B∞ is generated by a hypothesis hS∗
such that S∗ ∈ Pd, then for all d ∈ N, for all a1:∞ ∈ (Bd)∞,
we have that L∞(π′d) <∞.

Proof. Exploiting the assumption that x1:n is generated by a
hypothesis hS∗ , the cumulative loss can be expressed as

Ln(π′d) = − log

 ∏
t∈T −n

n−t (n
−
t + 2)

(n−t + 1)2

∏
t∈T +

n

1

(n−t + 1)2


= − log

|T −n |∏
i=1

i(i+ 2)

(i+ 1)2

+ 2
∑
t∈T +

n

log(n−t + 1).

(13)

Now we can bound the first summand in Equation 13 by

− log

|T −n |∏
i=1

i(i+ 2)

(i+ 1)2


= −

|T −n |∑
i=1

log i−
|T −n |∑
i=1

log(i+ 2) + 2

|T −n |∑
i=1

log(i+ 1)

= −
|T −n |∑
i=1

log i+

|T −n |+1∑
i=2

log i

−
|T −n |+1∑
i=2

log(i+ 1) +

|T −n |∑
i=1

log(i+ 1)

= log(|T −n |+ 1) + 1− log(|T −n |+ 2)

≤ 1.

Thus we have

Ln(π′d) ≤ 1 + 2
∑
t∈T +

log(n−t + 1)

≤ 1 + 2d max
t∈T +

n

log(n−t + 1) (since |T +
n | ≤ d)

≤ 1 + 2d log
(
max(T +

n ) + 1
)
.

Since |T +
n | ≤ d, the above bound implies L∞(π′d) <∞.

There are two main drawbacks with this approach. The first
is that an infinite loss can be suffered in the non-realizable
case. The second is that, in the case of finite sequences,
the loss is upper bounded (see the proof of Theorem 10) by
2d log(n+1) instead of (d+1) log(n+1) as per Theorem 9.

A method that exploits simplicity in the hypothesis space.
The well-known WINNOW1 algorithm [Littlestone, 1988] can
also be used to learn monotone conjunctions online under the
0/1 loss via the transformation given in Example 5 of the orig-
inal paper. Provided a hypothesis hS∗ with S∗ ∈ Pd gen-
erates the data, the total number of mistakes this algorithm
makes is known to be upper bounded by

α|S∗| (logα θ + 1) +
d

θ
(14)

whenever the algorithm hyper-parameters satisfy both α > 1
and θ ≥ 1/α. For example, by setting θ = d/2 and α = 2,

Algorithm 3 ωd(x1:n; a1:n)
Require: α, θ ∈ R such that α > 1, θ ≥ 1/α

1: wi ← 1, ∀1 ≤ i ≤ d
2: for t = 1 to n do
3: Observe at

4: yt ←
r∑d

i=1 wi(1− ait) ≤ θ
z

5: pt(yt; at) := t/(t+ 1)
6: pt(1− yt; at) := 1/(t+ 1)

7: Observe xt and suffer a loss of − log pt(xt; at).

8: if yt 6= xt then
9: if xt = 1 then

10: wi ← 0 if ait = 0, ∀1 ≤ i ≤ d
11: else
12: wi ← αwi if ait = 0, ∀1 ≤ i ≤ d
13: end if
14: end if
15: r ← pt(xt; at) r

16: end for
17: return r

one can bound the number of mistakes by 2|S∗| log d + 2.
This particular parametrization is well suited to the case
where |S∗| � d; that is, whenever many features are irrel-
evant.

Here we describe an adaptation of this method for the log-
arithmic loss along with a worst-case analysis. Although the
resultant algorithm will not enjoy as strong a loss guarantee
as Algorithm 2 in general, one would prefer its guarantees in
situations where |S∗| � d. The main idea is to assign proba-
bility t/(t + 1) at time t to the class predicted by WINNOW1
(as applied to monotone conjunctions). Pseudocode for this
procedure is given in Algorithm 3.

The following theorem bounds the cumulative loss. Com-
pared with Theorem 9, here we see that a multiplicative de-
pendence on O(|S∗| log d) is introduced in place of the pre-
vious O(d), which is preferred whenever |S∗| � d.

Theorem 11. If x1:n is generated by a hypothesis hS∗ such
that S∗ ∈ Pd, then for all n ∈ N, for all d ∈ N, for all
x1:n ∈ Bn, for all a1:n ∈ Bn×d, we have that

Ln(ωd) ≤
(
α|S∗| (logα θ + 1) +

d

θ
+ 1

)
log (n+ 1) .

In particular, if θ = d/2 and α = 2 then

Ln(ωd) ≤ (2|S∗| log d+ 2) log (n+ 1) .

Proof. Let Mn denote the set of times where the original
WINNOW1 algorithm would make a mistaken prediction, i.e.

Mn := {t ∈ [1, n] : yt 6= xt} .

Also letMn := [1, n] \Mn. We can now bound the cumu-
lative loss by

Ln(ωd) = − logωd(x1:n; a1:n)



(a)
= − log

∏
t∈Mn

(
1

t+ 1

) ∏
t∈Mn

(
t

t+ 1

)

= − log

( ∏
t∈Mn

1

t+ 1

)
− log

 ∏
t∈Mn

t

t+ 1


(b)
≤ − log

(
1

n+ 1

)αk(logα θ+1)+d/θ

− log

n−bαk(logα θ+1)+d/θc∏
t=1

t

t+ 1


= [αk(logα θ + 1) + d/θ] log(n+ 1)

+ log (n− bαk(logα θ + 1) + d/θc+ 1)

≤ [αk(logα θ + 1) + d/θ + 1] log(n+ 1).

Step (a) follows from definition of Algorithm 3 and Mn.
Step (b) applies both Equation 14 and that 1/(n + 1) ≤
1/(t+ 1) for all 1 ≤ t ≤ n.

5 Handling k-CNF Boolean functions

Finally, we describe how our techniques can be used to proba-
bilistically predict the output of an unknown k-CNF function.
Given a set of d variables {x1, . . . , xd}, a k-CNF Boolean
function is a conjunction of clauses c1 ∧ c2 ∧ · · · ∧ cm,
where for 1 ≤ y ≤ m, each clause cy is a disjunc-
tion of k literals, with each literal being an element from
{x1, . . . , xd,¬x1, . . . ,¬xd}. The number of syntactically
distinct clauses is therefore (2d)k. We will use the notation
Ckd to denote the class of k-CNF Boolean formulas that can
be formed from d variables.

The task of probabilistically predicting a k-CNF Boolean
function of d variables can be reduced to that of probabilisti-
cally predicting a monotone conjunction over a larger space
of input variables. We can directly use the same reduction
as used by Valiant [1984] to show that the class of k-CNF
Boolean functions is PAC-learnable. The main idea is to
first transform the given side information a ∈ Bd into a new
Boolean vector c ∈ B(2d)k , where each component of c cor-
responds to the truth value for each distinct k-literal clause
formed from the set of input variables {ai}di=1, and then run
either Algorithm 1 or Algorithm 2 on this transformed input.
In the case of Algorithm 1, this results in an online algorithm
where each iteration takes O(dk) time; given n examples,
the algorithm runs in O(ndk) time and uses O(ndk) space.
Furthermore, if we denote the above process using either Al-
gorithm 1 or Algorithm 2 as ALG1kd or ALG2kd respectively,
then Theorems 8 and 9 allows us to upper bound the loss of
each approach.

Corollary 12. For all n ∈ N, for all k ∈ N, for any se-
quence of side information a1:n ∈ Bn×d, if x1:n is generated
from a hypothesis h∗ ∈ Ckd , the loss of ALG1kd and ALG2kd
with respect to h∗ satisfies the upper bounds Ln(ALG1) ≤
22k+1d2k and Ln(ALG2) ≤

(
2kdk + 1

)
log(n + 1) respec-

tively.

6 Closing Remarks
This paper has provided three efficient, low-loss online al-
gorithms for probabilistically predicting targets generated by
some unknown k-CNF Boolean function of d Boolean vari-
ables in time (for fixed k) polynomial in d. The construction
of Algorithm 1 is technically interesting in the sense that it is
a hybrid Bayesian technique, which performs full Bayesian
inference only on the positive examples, with a prior care-
fully chosen so that the loss suffered on negative examples
is kept small. This approach may be potentially useful for
more generally applying the ideas behind Bayesian inference
or exponential weighted averaging in settings where a direct
application would be computationally intractable. The more
practical Algorithm 2 is less interpretable, but hasO(d) space
complexity and a per instance time complexity ofO(d), while
enjoying a loss within a multiplicative log n factor of the in-
tractable Bayesian predictor using a uniform prior. The final
method, a derivative of WINNOW, has favorable regret prop-
erties when many of the input features are expected to be ir-
relevant.

In terms of practical utility, we envision our techniques
being most useful as component of a larger predictive en-
semble. To give a concrete example, consider the statisti-
cal data compression setting, where the cumulative log-loss
under some probabilistic model directly corresponds to the
size of a file encoded using arithmetic encoding [Witten et
al., 1987]. Many strong statistical data compression tech-
niques work by adaptively combining the outputs of many
different probabilistic models. For example, the high perfor-
mance PAQ compressor uses a technique known as geometric
mixing [Mattern, 2013], to combine the outputs of many dif-
ferent contextual models in a principled fashion. Adding one
of our techniques to such a predictive ensemble would give
it the property that it could exploit k-CNF structure in places
where it exists.
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