
A Laplacian Framework for Option Discovery in Reinforcement Learning

Marlos C. Machado 1 Marc G. Bellemare 2 Michael Bowling 1

Abstract
Representation learning and option discovery are
two of the biggest challenges in reinforcement
learning (RL). Proto-value functions (PVFs) are
a well-known approach for representation learn-
ing in MDPs. In this paper we address the op-
tion discovery problem by showing how PVFs
implicitly define options. We do it by introduc-
ing eigenpurposes, intrinsic reward functions de-
rived from the learned representations. The op-
tions discovered from eigenpurposes traverse the
principal directions of the state space. They are
useful for multiple tasks because they are discov-
ered without taking the environment’s rewards
into consideration. Moreover, different options
act at different time scales, making them help-
ful for exploration. We demonstrate features of
eigenpurposes in traditional tabular domains as
well as in Atari 2600 games.

1. Introduction
Two important challenges in reinforcement learning (RL)
are the problems of representation learning and of auto-
matic discovery of skills. Proto-value functions (PVFs)
are a well-known solution for the problem of representa-
tion learning (Mahadevan, 2005; Mahadevan & Maggioni,
2007); while the problem of skill discovery is generally
posed under the options framework (Sutton et al., 1999;
Precup, 2000), which models skills as options.

In this paper, we tie together representation learning and
option discovery by showing how PVFs implicitly define
options. One of our main contributions is to introduce
the concepts of eigenpurpose and eigenbehavior. Eigen-
purposes are intrinsic reward functions that incentivize the
agent to traverse the state space by following the principal
directions of the learned representation. Each intrinsic re-
ward function leads to a different eigenbehavior, which is
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the optimal policy for that reward function. In this paper we
introduce an algorithm for option discovery that leverages
these ideas. The options we discover are task-independent
because, as PVFs, the eigenpurposes are obtained without
any information about the environment’s reward structure.
We first present these ideas in the tabular case and then
show how they can be generalized to the function approxi-
mation case.

Exploration, while traditionally a separate problem from
option discovery, can also be addressed through the careful
construction of options (McGovern & Barto, 2001; Şimşek
et al., 2005; Solway et al., 2014; Kulkarni et al., 2016).
In this paper, we provide evidence that not all options ca-
pable of accelerating planning are useful for exploration.
We show that options traditionally used in the literature to
speed up planning hinder the agents’ performance if used
for random exploration during learning. Our options have
two important properties that allow them to improve explo-
ration: (i) they operate at different time scales, and (ii) they
can be easily sequenced. Having options that operate at
different time scales allows agents to make finely timed ac-
tions while also decreasing the likelihood the agent will ex-
plore only a small portion of the state space. Moreover, be-
cause our options are defined across the whole state space,
multiple options are available in every state, which allows
them to be easily sequenced.

2. Background
We generally indicate random variables by capital letters
(e.g., R

t

), vectors by bold letters (e.g., ✓), functions by low-
ercase letters (e.g., v), and sets by calligraphic font (e.g., S).

2.1. Reinforcement Learning

In the RL framework (Sutton & Barto, 1998), an agent aims
to maximize cumulative reward by taking actions in an en-
vironment. These actions affect the agent’s next state and
the rewards it experiences. We use the MDP formalism
throughout this paper. An MDP is a 5-tuple hS,A, r, p, �i.
At time t the agent is in state s

t

2 S where it takes action
a

t

2 A that leads to the next state s

t+1 2 S according to
the transition probability kernel p(s0|s, a), which encodes
Pr(S

t+1 = s

0|S
t

= s,A

t

= a). The agent also observes
a reward R

t+1 ⇠ r(s, a). The agent’s goal is to learn a
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policy µ : S ⇥ A ! [0, 1] that maximizes the expected
discounted return G

t

.

= E
p,µ

⇥P1
k=0 �

k

R

t+k+1|st
⇤
, where

� 2 [0, 1) is the discount factor.

It is common to use the policy improvement theorem (Bell-
man, 1957) when learning to maximize G

t

. One technique
is to alternate between solving the Bellman equations for
the action-value function q

µk(s, a),

q

µk(s, a)
.

= E
µk,p

⇥
G

t

|S
t

= s,A

t

= a

⇤

=

X

s

0
,r

p(s

0
, r|s, a)

⇥
r + �

X

a

0

µ

k

(a

0|s0)q
µk(s

0
, a

0
)

⇤

and making the next policy, µ
k+1, greedy w.r.t. q

µk ,

µ

k+1
.

= argmax

a2A
q

µk(s, a),

until converging to an optimal policy µ⇤.

Sometimes it is not feasible to learn a value for each state-
action pair due to the size of the state space. Generally,
this is addressed by parameterizing q

µ

(s, a) with a set of
weights ✓ 2 Rn such that q

µ

(s, a) ⇡ q

µ

(s, a,✓). It is
common to approximate q

µ

through a linear function, i.e.,
q

µ

(s, a,✓) = ✓>�(s, a), where �(s, a) denotes a linear
feature representation of state s when taking action a.

2.2. The Options Framework

The options framework extends RL by introducing tempo-
rally extended actions called skills or options. An option !

is a 3-tuple ! = hI,⇡, T i where I 2 S denotes the op-
tion’s initiation set, ⇡ : A⇥S ! [0, 1] denotes the option’s
policy, and T 2 S denotes the option’s termination set. Af-
ter the agent decides to follow option ! from a state in I,
actions are selected according to ⇡ until the agent reaches a
state in T . Intuitively, options are higher-level actions that
extend over several time steps, generalizing MDPs to semi-
Markov decision processes (SMDPs) (Puterman, 1994).

Traditionally, options capable of moving agents to bottle-
neck states are sought after. Bottleneck states are those
states that connect different densely connected regions of
the state space (e.g., doorways) (Şimşek & Barto, 2004;
Solway et al., 2014). They have been shown to be very
efficient for planning as these states are the states most fre-
quently visited when considering the shortest distance be-
tween any two states in an MDP (Solway et al., 2014).

2.3. Proto-Value Functions

Proto-value functions (PVFs) are learned representations
that capture large-scale temporal properties of an environ-
ment (Mahadevan, 2005; Mahadevan & Maggioni, 2007).
They are obtained by diagonalizing a diffusion model,
which is constructed from the MDP’s transition matrix. A
diffusion model captures information flow on a graph, and

it is commonly defined by the combinatorial graph Lapla-
cian matrix L = D � A, where A is the graph’s adja-
cency matrix and D the diagonal matrix whose entries are
the row sums of A. Notice that the adjacency matrix A

easily generalizes to a weight matrix W . PVFs are de-
fined to be the eigenvectors obtained after the eigendecom-
position of L. Different diffusion models can be used to
generate PVFs, such as the normalized graph Laplacian
L = D

� 1
2
(D �A)D

� 1
2 , which we use in this paper.

3. Option Discovery through the Laplacian
PVFs capture the large-scale geometry of the environment,
such as symmetries and bottlenecks. They are task inde-
pendent, in the sense that they do not use information re-
lated to reward functions. Moreover, they are defined over
the whole state space since each eigenvector induces a real-
valued mapping over each state. We can imagine that op-
tions with these properties should also be useful. In this
section we show how to use PVFs to discover options.

Let us start with an example. Consider the traditional 4-
room domain depicted in Figure 1c. Gray squares repre-
sent walls and white squares represent accessible states.
Four actions are available: up, down, right, and left. The
transitions are deterministic and the agent is not allowed to
move into a wall. Ideally, we would like to discover options
that move the agent from room to room. Thus, we should
be able to automatically distinguish between the different
rooms in the environment. This is exactly what PVFs do,
as depicted in Figure 2 (left). Instead of interpreting a PVF
as a basis function, we can interpret the PVF in our exam-
ple as a desire to reach the highest point of the plot, corre-
sponding to the centre of the room. Because the sign of an
eigenvector is arbitrary, a PVF can also be interpreted as a
desire to reach the lowest point of the plot, corresponding
to the opposite room. In this paper we use the eigenvectors
in both directions (i.e., both signs).

An eigenpurpose formalizes the interpretation above by
defining an intrinsic reward function. We can see it as
defining a purpose for the agent, that is, to maximize the
discounted sum of these rewards.

Definition 3.1 (Eigenpurpose). An eigenpurpose is the in-
trinsic reward function r

e
i

(s, s

0
) of a proto-value function

e 2 R|S| such that

r

e
i

(s, s

0
) = e

>
(�(s0)� �(s)), (1)

where �(x) denotes the feature representation of state x.

Notice that an eigenpurpose, in the tabular case, can be
written as re

i

(s, s

0
) = e[s

0
]� e[s].

We can now define a new MDP to learn the option associ-
ated with the purpose, Me

i

= hS,A[{?}, re
i

, p, �i, where
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(a) 10⇥10 grid (b) I-Maze (c) 4-room domain

Figure 1. Domains used for evaluation.

the reward function is defined as in (1) and the action set is
augmented by the action terminate (?), which allows the
agent to leave Me

i

without any cost. The state space and
the transition probability kernel remain unchanged from the
original problem. The discount rate can be chosen arbitrar-
ily, although it impacts the timescale the option encodes.

With Me
i

we define a new state-value function v

e
⇡

(s), for
policy ⇡, as the expected value of the cumulative dis-
counted intrinsic reward if the agent starts in state s and
follows policy ⇡ until termination. Similarly, we define a
new action-value function q

e
⇡

(s, a) as the expected value
of the cumulative discounted intrinsic reward if the agent
starts in state s, takes action a, and then follows policy ⇡

until termination. We can also describe the optimal value
function for any eigenpurpose obtained through e:

v

e
⇤(s) = max

⇡

v

e
⇡

(s) and q

e
⇤(s, a) = max

⇡

q

e
⇡

(s, a).

These definitions naturally lead us to eigenbehaviors.

Definition 3.2 (Eigenbehavior). An eigenbehavior is a pol-
icy �

e
: S ! A that is optimal with respect to the eigen-

purpose r

e
i

, i.e., �e
(s) = argmax

a2A q

e
⇤(s, a).

Finding the optimal policy ⇡

e
⇤ now becomes a traditional

RL problem, with a different reward function. Importantly,
this reward function tends to be dense, avoiding challeng-
ing situations due to exploration issues. In this paper we
use policy iteration to solve for an optimal policy.

If each eigenpurpose defines an option, its corresponding
eigenbehavior is the option’s policy. Thus, we need to de-
fine the option’s initiation and termination set. An option
should be available in every state where it is possible to
achieve its purpose, and to terminate when it is achieved.

When defining the MDP to learn the option, we augmented
the agent’s action set with the terminate action, allowing
the agent to interrupt the option anytime. We want options
to terminate when the agent achieves its purpose, i.e., when
it is unable to accumulate further positive intrinsic rewards.
With the defined reward function, this happens when the
agent reaches the state with largest value in the eigenpur-
pose (or a local maximum when � < 1). Any subsequent
reward will be negative. We are able to formalize this con-

Figure 2. Second PVF (left) and its corresponding option (right)
in the 4-room domain. Action terminate is depicted in red (top
right corner), other actions are depicted as arrows.

dition by defining q

�

(s,?)

.

= 0 for all �e. When the ter-
minate action is selected, control is returned to the higher
level policy (Dietterich, 2000). An option following a pol-
icy �

e terminates when q

e
�

(s, a)  0 for all a 2 A. We
define the initiation set to be all states in which there exists
an action a 2 A such that qe

�

(s, a) > 0. Thus, the option’s
policy is ⇡

e
(s) = argmax

a2A[{?} q
e
⇡

(s, a). We refer to
the options discovered with our approach as eigenoptions.
The eigenoption corresponding to the example at the be-
ginning of this section is depicted in Figure 2 (right).

For any eigenoption, there is always at least one state in
which it terminates, as we now show.
Theorem 3.1 (Option’s Termination). Consider an
eigenoption o = hI

o

,⇡

o

, T
o

i and � < 1. Then, in an
MDP with finite state space, T

o

is nonempty.

Proof. We can write the Bellman equation in the matrix
form: v = r+�Tv, where v is a finite column vector with
one entry per state encoding its value function. From (1)
we have r = Tw�w with w = �(s)>e, where e denotes
the eigenpurpose of interest. Therefore:

v +w = Tw + �Tv

= (1� �)Tw + �T (v +w)

= (1� �)(I � �T )

�1
Tw.

||v +w||1 = (1� �)||(I � �T )

�1
Tw||1

||v +w||1  (1� �)||(I � �T )

�1
T ||1||w||1

||v +w||1  (1� �)

1

(1� �)

||w||1

||v +w||1  ||w||1

We can shift w by any finite constant without changing the
reward, i.e., Tw�w = T (w+�)�(w+�) because T1� =

1� since
P

j

T

i,j

= 1. Hence, we can assume w� 0. Let
s

⇤
= argmax

s

w

s

⇤ , so that w
s

⇤
= ||w||1. Clearly v

s

⇤ 
0, otherwise ||v +w||1 � |v

s

⇤
+ w

s

⇤ | = v

s

⇤
+ w

s

⇤
>

w

s

⇤
= ||w||1, arriving at a contradiction.
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Figure 3. Options obtained from the four smallest eigenvectors in the 10⇥10 grid. Action terminate is depicted in red.

Figure 4. Options obtained from the four smallest eigenvectors in the I-Maze domain. Action terminate is depicted in red.

This result is applicable in both the tabular and linear func-
tion approximation case. An algorithm that does not rely
on knowing the underlying graph is provided in Section 5.

4. Empirical Evaluation
We used three MDPs in our empirical study (c.f. Figure 1):
an open room, an I-Maze, and the 4-room domain. Their
transitions are deterministic and gray squares denote walls.
Agents have access to four actions: up, down, right, and
left. When an action that would have taken the agent into
a wall is chosen, the agent’s state does not change. We
demonstrate three aspects of our framework:1

• How the eigenoptions present specific purposes. In-
terestingly, options leading to bottlenecks are not the
first ones we discover.

• How eigenoptions improve exploration by reducing
the expected number of steps required to navigate be-
tween any two states.

• How eigenoptions help agents to accumulate reward
faster. We show how few options may hurt the agents’
performance while enough options speed up learning.

4.1. Discovered Options

In the PVF theory, the “smoothest” eigenvectors, corre-
sponding to the smallest eigenvalues, are preferred (Ma-
hadevan & Maggioni, 2007). The same intuition applies to
eigenoptions, with the eigenpurposes corresponding to the
smallest eigenvalues being preferred. Figures 3, 4, and 5
depict the first eigenoptions discovered in the three do-
mains used for evaluation.

Eigenoptions do not necessarily look for bottleneck states,
1Python code can be found at:
https://github.com/mcmachado/options

allowing us to apply our algorithm in many environments in
which there are no obvious, or meaningful, bottlenecks. We
discover meaningful options in these environments, such as
walking down a corridor, or going to the corners of an open
room. Interestingly, doorways are not the first options we
discover in the 4-room domain (the fifth eigenoption is the
first to terminate at the entrance of a doorway). In the next
sections we provide empirical evidence that eigenoptions
are useful, and often more so than bottleneck options.

4.2. Exploration

A major challenge for agents to explore an environment
is to be decisive, avoiding the dithering commonly ob-
served in random walks (Machado & Bowling, 2016; Os-
band et al., 2016). Options provide such decisiveness by
operating in a higher level of abstraction. Agents perform-
ing a random walk, when equipped with options, are ex-
pected to cover larger distances in the state space, navigat-
ing back and forth between subgoals instead of dithering
around the starting state. However, options need to satisfy
two conditions to improve exploration: (1) they have to be
available in several parts of the state space, ensuring the
agent always has access to many different options; and (2)
they have to operate at different time scales. For instance,
in the 4-room domain, it is unlikely an agent randomly se-
lects enough primitive actions leading it to a corner if all
options move the agent between doorways. An important
result in this section is to show that it is very unlikely for
an agent to explore the whole environment if it keeps going
back and forth between similar high-level goals.

Eigenoptions satisfy both conditions. As demonstrated in
Section 4.1, eigenoptions are often defined in the whole
state space, allowing sequencing. Moreover, PVFs can be
seen as a “frequency” basis, with different PVFs being as-
sociated with different frequencies (Mahadevan & Mag-
gioni, 2007). The corresponding eigenoptions also operate
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Figure 5. Options obtained from the four smallest eigenvectors in the 4-room domain. Action terminate is depicted in red.

Primitive actions

Options

(a) 10⇥10 grid

Primitive actions

Options

(b) I-Maze

Primitive actions

Options

(c) 4-room domain

Primitive actions

Options

(d) Bottleneck options

Figure 6. Expected number of steps between any two states when following a random walk. Figure 6d shows the performance of options
that look for doorways in the 4-room domain.

at different frequencies, with the length of a trajectory until
termination varying. This behavior can be seen when com-
paring the second and fourth eigenoptions in the 10 ⇥ 10

grid (Figure 3). The fourth eigenoption terminates, on ex-
pectation, twice as often as the second eigenoption.

In this section we show that eigenoptions improve explo-
ration. We do so by introducing a new metric, which we
call diffusion time. Diffusion time encodes the expected
number of steps required to navigate between two states
randomly chosen in the MDP while following a random
walk. A small expected number of steps implies that it is
more likely that the agent will reach all states with a ran-
dom walk. We discuss how this metric can be computed in
the Appendix.

Figure 6 depicts, for our the three environments, the dif-
fusion time with options and the diffusion time using only
primitive actions. We add options incrementally in order of
increasing eigenvalue when computing the diffusion time
for different sets of options.

The first options added hurt exploration, but when enough
options are added, exploration is greatly improved when
compared to a random walk using only primitive actions.
The fact that few options hurt exploration may be surpris-
ing at first, based on the fact that few useful options are gen-
erally sought after in the literature. However, this is a ma-
jor difference between using options for planning and for
learning. In planning, options shortcut the agents’ trajec-
tories, pruning the search space. All other actions are still
taken into consideration. When exploring, a uniformly ran-
dom policy over options and primitive actions skews where

agents spend their time. Options that are much longer than
primitive actions reduce the likelihood that an agent will
deviate much from the options’ trajectories, since sampling
an option may undo dozens of primitive actions. This bias-
ing is often observed when fewer options are available.

The discussion above can be made clearer with an exam-
ple. In the 4-room domain, if the only options available are
those leading the agent to doorways (c.f. Appendix), it is
less likely the agent will reach the outer corners. To do so
the agent would have to select enough consecutive prim-
itive actions without sampling an option. Also, it is very
likely agents will be always moving between rooms, never
really exploring inside a room. These issues are mitigated
with eigenoptions. The first eigenoptions lead agents to in-
dividual rooms, but other eigenoptions operate in different
time scales, allowing agents to explore different parts of
rooms.

Figure 6d supports the intuition that options leading to bot-
tleneck states are not sufficient, by themselves, for explo-
ration. It shows how the diffusion time in the 4-room do-
main is increased when only bottleneck options are used.
As in the PVF literature, the ideal number of options to be
used by an agent can be seen as a model selection problem.

4.3. Accumulating Rewards

We now illustrate the usefulness of our options when the
agent’s goal is to accumulate reward. We also study the
impact of an increasing number of options in such a task.
In these experiments, the agent starts at the bottom left cor-
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Primitive
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8 options
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(a) 10⇥10 grid

Primitive
actions

2 options

4 options

8 options

64 options 128 options

(b) I-Maze

Primitive
actions

2 options

4 options

8 options

64 options 128 options256 options

(c) 4-room domain

Figure 7. The agents’ performance accumulating reward as options are added to the action set in their behavior policy. These results use
the eigenpurposes directly obtained from the eigendecomposition as well as their negation.

ner and its goal is to reach the top right corner. The agent
observes a reward of 0 until the goal is reached, when it
observes a reward of +1. We used Q-Learning (Watkins &
Dayan, 1992) (↵ = 0.1, � = 0.9) to learn a policy over
primitive actions. The behavior policy chooses uniformly
over primitive actions and options, following them until ter-
mination. Figure 7 depicts, after learning for a given num-
ber of episodes, the average over 100 trials of the agents’
final performance. Episodes were 100 time steps long, and
we learned for 250 episodes in the 10 ⇥ 10 grid and in the
I-Maze, and for 500 episodes in the 4-room domain.

In most scenarios eigenoptions improve performance. As
in the previous section, exceptions occur when only a few
options are added to the agent’s action set. The best results
were obtained using 64 options. Despite being an addi-
tional parameter, our results show that the agent’s perfor-
mance is fairly robust across different numbers of options.

Eigenoptions are task-independent by construction. Addi-
tional results in the appendix show how the same set of
eigenoptions is able to speed-up learning in different tasks.
In the appendix we also compare eigenoptions to random
options, that is, options that use a random state as subgoal.

5. Approximate Option Discovery

So far we have assumed that agents have access to the adja-
cency matrix representing the underlying MDP. However,
in practical settings this is generally not true. In fact, the
number of states in these settings is often so large that
agents rarely visit the same state twice. These problems
are generally tackled with sample-based methods and some
sort of function approximation.

In this section we propose a sample-based approach for op-
tion discovery that asymptotically discovers eigenoptions.
We then extend this algorithm to linear function approx-
imation. We provide anecdotal evidence in Atari 2600
games that this relatively naı̈ve sample-based approach to
function approximation discovers purposeful options.

5.1. Sample-based Option Discovery

In the online setting, agents must sample trajectories. Nat-
urally, one can sample trajectories until one is able to per-
fectly construct the MDP’s adjacency matrix, as suggested
by Mahadevan & Maggioni (2007). However, this ap-
proach does not easily extend to linear function approxi-
mation. In this section we provide an approach that does
not build the adjacency matrix allowing us to extend the
concept of eigenpurposes to linear function approximation.

In our algorithm, a sample transition is added to a ma-
trix T if it was not previously encountered. The transi-
tion is added as the difference between the current and
previous observations, i.e., �(s0) � �(s). In the tabular
case we define �(s) to be the one-hot encoding of state s.
Once enough transitions have been sampled, we perform
a singular value decomposition on the matrix T such that
T = U⌃V

>. We use the columns of V , which correspond
to the right-eigenvectors of T , to generate the eigenpur-
poses. The intrinsic reward and the termination criterion
for an eigenbehavior are the same as before.

Matrix T is known as the incidence matrix. If all transitions
in the graph are sampled once, for tabular representations,
this algorithm discovers the same options we obtain with
the combinatorial Laplacian. The theorem below states the
equivalence between the obtained eigenpurposes.

Theorem 5.1. Consider the SVD of T = U

T

⌃

T

V

>
T

, with
each row of T consisting of the difference between obser-
vations, i.e., �(s0)��(s). In the tabular case, if all transi-
tions in the MDP have been sampled once, the orthonormal
eigenvectors of L are the columns of V >

T

.

Proof. Given the SVD decomposition of a matrix A =

U⌃V

>, the columns of V are the eigenvectors of
A

>
A (Strang, 2005). We know that T>

T = 2L, where
L = D � W (Lemma 5.1, c.f. Appendix). Thus, the
columns of V

T

are the eigenvectors of T>
T , which can be

rewritten as 2(D �W ). Therefore, the columns of V
T

are
also the eigenvectors of L.
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Figure 8. Options in FREEWAY (c.f. text for details).

There is a trade-off between reconstructing the adjacency
matrix and constructing the incidence matrix. In MDPs in
which states are sparsely connected, such as the I-Maze, the
latter is preferred since it has fewer transitions than states.
However, what makes this result interesting is the fact that
our algorithm can be easily generalized to linear function
approximation.

5.2. Function Approximation

An adjacency matrix is not very useful when the agent has
access only to features of the state. However, we can use
the intuition about the incidence matrix to propose an algo-
rithm compatible with linear function approximation.

In fact, to apply the algorithm proposed in the previous sec-
tion, we just need to define what constitutes a new transi-
tion. We define two vectors, t and t

0, to be identical if
and only if t� t

0
= 0. We then use a set data structure to

avoid duplicates when storing �(s0)��(s). This is a naı̈ve
approach, but it provides encouraging evidence eigenop-
tions generalize to linear function approximation. We ex-
pect more involved methods to perform even better.

We tested our method in the ALE (Bellemare et al., 2013).
The agent’s representation consists of the emulator’s RAM
state (1,024 bits). The final incidence matrix in which we
ran the SVD had 25,000 rows, which we sampled uni-
formly from the set of observed transitions. We provide
further details of the experimental setup in the appendix.

In the tabular case we start selecting eigenpurposes gener-
ated by the eigenvectors with smallest eigenvalue, because
these are the “smoothest” ones. However, it is not clear
such intuition holds here because we are in the function ap-
proximation setting and the matrix of transitions does not
contain all possible transitions. Therefore, we analyzed, for
each game, all 1,024 discovered options.

We approximate these options greedily (� = 0)
with the ALE emulator’s look-ahead. The next
action a

0 for an eigenpurpose e is selected as
argmax

b2A

R
s

0 p(s
0|s, b) re

i

(s, s

0
).

Even with such a myopic action selection mechanism we

Option #1005

Option #994 Option #807

Option #811 Option #836

Option #455

Figure 9. Options in MONTEZUMA’S REV. (c.f. text for details).

were able to obtain options that clearly demonstrate intent.
In FREEWAY, a game in which a chicken is expected to
cross the road while avoiding cars, we observe options in
which the agent clearly wants to reach a specific lane in the
street. Figure 8 (left) depicts where the chicken tends to
be when the option is executed. On the right we see a his-
togram representing the chicken’s height during an episode.
We can clearly see how the chicken’s height varies for dif-
ferent options, and how a random walk over primitive ac-
tions (rand) does not explore the environment properly. Re-
markably, option #445 scores 28 points at the end of the
episode, without ever explicitly taking the reward signal
into consideration. This performance is very close to those
obtained by state-of-the-art algorithms.

In MONTEZUMA’S REVENGE, a game in which the agent
needs to navigate through a room to pickup a key so it can
open a door, we also observe the agent having the clear
intent of reaching particular positions on the screen, such
as staircases, ropes and doors (Figure 9). Interestingly, the
options we discover are very similar to those handcrafted
by Kulkarni et al. (2016) when evaluating the usefulness of
options to tackle such a game. A video of the highlighted
options can be found online.2

6. Related Work
Most algorithms for option discovery can be seen as top-
down approaches. Agents use trajectories leading to infor-
mative rewards3 as a starting point, decomposing and re-
fining them into options. There are many approaches based
on this principle, such as methods that use the observed
rewards to generate intrinsic rewards leading to new value
functions (e.g., McGovern & Barto, 2001; Menache et al.,
2002; Konidaris & Barto, 2009), methods that use the ob-
served rewards to climb a gradient (e.g., Mankowitz et al.,
2016; Vezhnevets et al., 2016; Bacon et al., 2017), or to do

2
https://youtu.be/2BVicx4CDWA

3We define an informative reward to be the signal that informs
the agent it has reached a goal. For example, when trying to es-
cape from a maze, we consider 0 to be an informative reward if
the agent observes rewards of value �1 in every time step it is in-
side the maze. A different example is a positive reward observed
by an agent that typically observes rewards of value 0.
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probabilistic inference (Daniel et al., 2016). However, such
approaches are not applicable in large state spaces with
sparse rewards. If informative rewards are unlikely to be
found by an agent using only primitive actions, requiring
long or specific sequences of actions, options are equally
unlikely to be discovered.

Our algorithm can be seen as a bottom-up approach, in
which options are constructed before the agent observes
any informative reward. These options are composed to
generate the desired policy. Options discovered this way
tend to be independent of an agent’s intention, and are
potentially useful in many different tasks (Gregor et al.,
2016). Such options can also be seen as being useful for
exploration by allowing agents to commit to a behavior for
an extended period of time (Machado & Bowling, 2016).
Among the approaches to discover options without using
extrinsic rewards are the use of global or local graph cen-
trality measures (Şimşek & Barto, 2004; Şimşek et al.,
2005; Şimşek & Barto, 2008) and clustering of states (Man-
nor et al., 2004; Bacon, 2013; Lakshminarayanan et al.,
2016). Interestingly, Şimşek et al. (2005) and Lakshmi-
narayanan et al. (2016) also use the graph Laplacian in their
algorithm, but to identify bottleneck states.

Baranes & Oudeyer (2013) and Moulin-Frier & Oudeyer
(2013) show how one can build policies to explicitly as-
sist agents to explore the environment. The proposed algo-
rithms self-generate subgoals in order to maximize learning
progress. The policies built can be seen as options. Re-
cently, Solway et al. (2014) proved that “optimal hierarchy
minimizes the geometric mean number of trial-and-error
attempts necessary for the agent to discover the optimal
policy for any selected task (...)”. Our experiments confirm
this result, although we propose diffusion time as a different
metric to evaluate how options improve exploration.

The idea of discovering options by learning to control parts
of the environment is also related to our work. Eigenpur-
poses encode different rates of change in the agents rep-
resentation of the world, while the corresponding options
aim at maximizing such change. Others have also pro-
posed ways to discover options based on the idea of learn-
ing to control the environment. Hengst (2002), for instance,
proposes an algorithm that explicitly models changes in
the variables that form the agent’s representation. Re-
cently, Gregor et al. (2016) proposed an algorithm in which
agents discover options by maximizing a notion of empow-
erment (Salge et al., 2014), where the agent aims at getting
to states with a maximal set of available intrinsic options.

Continual Curiosity driven Skill Acquisition (CCSA)
(Kompella et al., In Press) is the closest approach to ours.
CCSA also discovers skills that maximize an intrinsic re-
ward obtained by some extracted representation. While we
use PVFs, CCSA uses Incremental Slow Feature Analysis

(SFA) (Kompella et al., 2011) to define the intrinsic reward
function. Sprekeler (2011) has shown that, given a spe-
cific choice of adjacency function, PVFs are equivalent to
SFA (Wiskott & Sejnowski, 2002). SFA becomes an ap-
proximation of PVFs if the function space used in the SFA
does not allow arbitrary mappings from the observed data
to an embedding. Our method differs in how we define
the initiation and termination sets, as well as in the objec-
tive being maximized. CCSA acquires skills that produce
a large variation in the slow-feature outputs, leading to op-
tions that seek for bottlenecks. Our approach does not seek
for bottlenecks, focusing on traversing different directions
of the learned representation.

7. Conclusion
Being able to properly abstract MDPs into SMDPs can re-
duce the overall expense of learning (Sutton et al., 1999;
Solway et al., 2014), mainly when the learned options are
reused in multiple tasks. On the other hand, the wrong hier-
archy can hinder the agents’ learning process, moving the
agent away from desired goal states. Current algorithms
for option discovery often depend on an initial informative
reward signal, which may not be readily available in large
MDPs. In this paper, we introduced an approach that is ef-
fective in different environments, for a multitude of tasks.

Our algorithm uses the graph Laplacian, being directly re-
lated to the concept of proto-value functions. The learned
representation informs the agent what are meaningful op-
tions to be sought after. The discovered options can be seen
as traversing each one of the dimensions in the learned rep-
resentation. We believe successful algorithms in the future
will be able to simultaneously discover representations and
options. Agents will use their learned representation to dis-
cover options, which will be used to further explore the
environment, improving the agent’s representation.

Interestingly, the options first discovered by our approach
do not necessarily find bottlenecks, which are commonly
sought after. In this paper we showed how bottleneck op-
tions can hinder exploration strategies if naively added to
the agent’s action set, and how the options we discover can
help an agent to explore. Also, we have shown how the
discovered options can be used to accumulate reward in a
multitude of tasks, leveraging their exploratory properties.

There are several exciting avenues for future work. As
noted, SFA can be seen as an approximation to PVFs.
It would be interesting to compare such an approach to
eigenoptions. It would also be interesting to see if the op-
tions we discover can be generated incrementally and with
incomplete graphs. Finally, one can also imagine exten-
sions to the proposed algorithm where a hierarchy of op-
tions is built.
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References
Bacon, Pierre-Luc. On the Bottleneck Concept for Options

Discovery: Theoretical Underpinnings and Extension in
Continuous State Spaces. Master’s thesis, McGill Uni-
versity, 2013.

Bacon, Pierre-Luc, Harb, Jean, and Precup, Doina. The
option-critic architecture. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2017.

Baranes, Adrien and Oudeyer, Pierre-Yves. Active learn-
ing of inverse models with intrinsically motivated goal
exploration in robots. Robotics and Autonomous Sys-
tems, 61(1):49–73, 2013.

Bellemare, Marc G., Naddaf, Yavar, Veness, Joel, and
Bowling, Michael. The Arcade Learning Environment:
An Evaluation Platform for General Agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

Bellman, Richard E. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.
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