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Abstract
We introduce a method for automatically select-
ing the path, or syllabus, that a neural network
follows through a curriculum so as to maximise
learning efficiency. A measure of the amount that
the network learns from each data sample is pro-
vided as a reward signal to a nonstationary multi-
armed bandit algorithm, which then determines a
stochastic syllabus. We consider a range of sig-
nals derived from two distinct indicators of learn-
ing progress: rate of increase in prediction accu-
racy, and rate of increase in network complex-
ity. Experimental results for LSTM networks on
three curricula demonstrate that our approach can
significantly accelerate learning, in some cases
halving the time required to attain a satisfactory
performance level.

1. Introduction
Over two decades ago, in The importance of starting small,
Elman put forward the idea that a curriculum of progres-
sively harder tasks could significantly accelerate a neural
network’s training (Elman, 1993). However curriculum
learning has only recently become prevalent in the field
(e.g., Bengio et al., 2009), due in part to the greater com-
plexity of problems now being considered. In particular,
recent work on learning programs with neural networks
has relied on curricula to scale up to longer or more com-
plicated tasks (Sutskever and Zaremba, 2014; Reed and
de Freitas, 2015; Graves et al., 2016). We expect this trend
to continue as the scope of neural networks widens, with
deep reinforcement learning providing fertile ground for
structured learning.

One reason for the slow adoption of curriculum learning
is that it’s effectiveness is highly sensitive to the mode of
progression through the tasks. One popular approach is to
define a hand-chosen performance threshold for advance-
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ment to the next task, along with a fixed probability of re-
turning to earlier tasks, to prevent forgetting (Sutskever and
Zaremba, 2014). However, as well as introducing hard-to-
tune parameters, this poses problems for curricula where
appropriate thresholds may be unknown or variable across
tasks. More fundamentally, it presupposes that the tasks
can be ordered by difficulty, when in reality they may vary
along multiple axes of difficulty, or have no predefined or-
der at all.

We propose to instead treat the decision about which task
to study next as a stochastic policy, continuously adapted to
optimise some notion of what Oudeyer et al. (2007) termed
learning progress. Doing so brings us into contact with
the intrinsic motivation literature (Barto, 2013), where var-
ious indicators of learning progress have been used as re-
ward signals to encourage exploration, including compres-
sion progress (Schmidhuber, 1991), information acquisi-
tion (Storck et al., 1995), Bayesian surprise (Itti and Baldi,
2009), prediction gain (Bellemare et al., 2016) and varia-
tional information maximisation (Houthooft et al., 2016).
We focus on variants of prediction gain, and also introduce
a novel class of progress signals which we refer to as com-
plexity gain. Derived from minimum description length
principles, complexity gain equates acquisition of knowl-
edge with an increase in effective information encoded in
the network weights.

Given a progress signal that can be evaluated for each
training example, we use a multi-armed bandit algorithm
to find a stochastic policy over the tasks that maximises
overall progress. The bandit is nonstationary because the
behaviour of the network, and hence the optimal policy,
evolves during training. We take inspiration from a previ-
ous work that modelled an adaptive student with a multi-
armed bandit in the context of developmental learning
(Lopes and Oudeyer, 2012; Clement et al., 2015). Another
related area is the field of active learning, where similar
gain signals have been used to guide decisions about which
data point to label next (Settles, 2010). Lastly, there are
parallels with recent work on using Bayesian optimisation
to find the best order in which to train a word embedding
network on a language corpus (Tsvetkov, 2016); however
this differs from our work in that the ordering was entirely
determined before each training run, rather than adaptively
altered in response to the model’s progress.
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2. Background
We consider supervised learning problems where target
sequences (b1,b2, . . . ) are conditionally modelled given
their respective input sequences (a1,a2, . . . ). For conve-
nience we suppose that the targets are drawn from a fi-
nite set B, noting, however, that our framework extends
straightforwardly to continuous targets, with probability
densities taking the place of probabilities. As is typical
for neural networks, sequences may be grouped together
in batches (b1:B ,a1:B) to accelerate training. The condi-
tional probability output by the model is

p(b1:B |a1:B) =
∏
i,j

p(bij |bi1:j−1,ai1:j−1).

From here onwards, we consider each batch as a single
example x from X := (A × B)N , and write p(x) :=
p(b1:B |a1:B) for its probability. Under this notation, a
task is a distribution D over sequences from X . A cur-
riculum is an ensemble of tasks D1, . . . , DN , a sample is
an example drawn from one of the tasks of the curriculum,
and a syllabus is a time-varying sequence of distributions
over tasks. We consider a neural network to be a proba-
bilistic model pθ over X , whose parameters are denoted θ.
The expected loss of the network on the kth task is

Lk(θ) := E
x∼Dk

L(x, θ),

where L(x, θ) := − log pθ(x) is the sample loss on x.
Whenever unambiguous, we will simply denote the ex-
pected and sample losses by Lk and L(x) respectively.

2.1. Curriculum Learning

We consider two related settings. In the multiple tasks set-
ting, The goal is to perform as well as possible on all tasks
in {Dk}; this is captured by the objective function

LMT :=
1

N

N∑
k=1

Lk.

In the target task setting, we are only interested in mini-
mizing the loss on the final task DN . The other tasks then
act as a series of stepping stones to the real problem. The
objective function in this setting is simply LTT := LN .

2.2. Adversarial Multi-Armed Bandits

We view a curriculum containing N tasks as an N -armed
bandit (Bubeck and Cesa-Bianchi, 2012), and a syllabus as
an adaptive policy which seeks to maximize payoffs from
this bandit. In the bandit setting, an agent selects a se-
quence of arms (actions) a1 . . . aT over T rounds of play
(at ∈ {1, . . . , N}). After each round, the selected arm

yields a payoff rt; the payoffs for the other arms are not
observed.

The classic algorithm for adversarial bandits is Exp3 (Auer
et al., 2002), which uses multiplicative weight updates to
guarantee low regret with respect to the best arm. On round
t, the agent selects an arm stochastically according to a pol-
icy πt. This policy is defined by a set of weights wt,i:

πEXP3
t (i) :=

ewt,i∑N
j=1 e

wt,j
.

The weights are the sum of importance-sampled rewards:

wt,i := η
∑
s<t

r̃s,i r̃s,i :=
rsI[as=i]
πs(i)

.

Exp3 acts so as to minimize regret with respect to the single
best arm evaluated over the whole history. However, a com-
mon occurrence is for an arm to be optimal for a portion of
the history, then another arm, and so on; the best strategy
is then piecewise stationary. This is generally the case in
our setting, as the expected reward for each task changes as
the model learns. The Fixed Share method (Herbster and
Warmuth, 1998) addresses this issue by using an ε-greedy
strategy and mixing in the weights additively. In the ban-
dit setting, this is known as the Exp3.S algorithm (also by
Auer et al. (2002)):

πEXP3.P
t (i) := (1− ε)πEXP3

t (i) +
ε

N
(1)

wS
t,i := log

[
(1− αt) exp

{
wS
t−1,i + ηr̃βt−1,i

}
+

αt
N − 1

∑
j 6=i

exp
{
wS
t−1,j + ηr̃βt−1,j

}]
wS

1,i := 0 αt := t−1 r̃βs,i :=
rsI[as=i] + β

πs(i)
.

2.3. Reward Scaling

The appropriate step size η depends on the magnitudes of
the rewards, which may not be known a priori. The prob-
lem is particularly acute in our setting, where the magni-
tude depends strongly on the gain signal used to measure
learning progress, as well as varying over time as the model
learns. To address this issue, we adaptively rescale all re-
wards to lie in the interval [−1, 1] using the following pro-
cedure: Let Rt be the history of unscaled rewards up to
time t, i.e. Rt = {r̂i}t−1i=1 . Let qlo

t and qhi
t be quantiles

of Rt, which we choose here to be the 20th and 80th per-
centiles respectively. The scaled reward rt is obtained by
clipping r̂t to the interval [qlo

t , q
hit ] and then linearly map-

ping the result to lie in [−1, 1]:

rt =


−1 if r̂t < qlo

t

1 if r̂t > qhi
t

2(r̂t−qlo
t )

qhi
t−qlo

t
− 1 otherwise.

(2)
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Rather than keeping the entire history of rewards, we use
reservoir sampling to maintain a representative sample, and
compute approximate quantiles from this sample. These
quantiles can be obtained in Θ(log|Rt|) time.

3. Learning Progress Signals
Our goal is to use the policy output by Exp3.S as a syllabus
for training our models. Ideally we would like the policy
to maximize the rate at which we minimize the loss, and
the reward should reflect this rate – what Oudeyer et al.
(2007) calls learning progress. However, it usually is com-
putationally undesirable or even impossible to measure the
effect of a training sample on the target objective, and we
therefore turn to surrogate measures of progress. Broadly,
these measures are either 1) loss-driven, in the sense that
they equate progress with a decrease in some loss; or 2)
complexity-driven, when they equate progress with an in-
crease in model complexity.

Training proceeds as follows: at each time t, we first sam-
ple a task index k ∼ πt. We then generate a sample from
this task x ∼ Dk. Note that each x is in general a batch of
training sequences, and that in order to reduce noise in the
gain signal we draw the whole batch from a single task.
We compute the chosen measure of learning progress ν
then divide by the time τ(x) required to process the sam-
ple (since it is the rate of progress we are concerned with,
and processing time may vary from task to task) to get the
raw reward r̂ = ν/τ(x) For the purposes of this work,
τ(x) was simply the length of the longest input sequence
in x; for other tasks or architectures a more complex cal-
culation may be required. We then rescale r̂ into a reward
rt ∈ [−1, 1], and provide it to Exp3.S. The procedure is
summarized as Algorithm 1.

Algorithm 1 Automated Curriculum Learning

Initially: wi = 0 for i ∈ [N ]

for t = 1 . . . T do
π(k) := (1− ε) ewk∑

i e
wi

+ ε
N

Draw task index k from π
Draw training batch x from Dk

Train network pθ on x
Compute learning progress ν (Sections 3.1 & 3.2)
Map r̂ = ν/τ(x) to r ∈ [−1, 1] (Section 2.3)
Update wi with reward r using Exp3.S (1)

end for

3.1. Loss-driven Progress

We consider five loss-driven progress signals, all which
compare the predictions made by the model before and af-
ter training on some sample x. The first two signals we

present are instantaneous in the sense that they only depend
on x. Such signals are appealing because they are typically
cheaper to evaluate, and are agnostic about the overall goal
of the curriculum. The remaining three signals more di-
rectly measure the effect of training on the desired objec-
tive, but require an additional sample x′. In what follows
we denote the model parameters before and after training
on x by θ and θ′ respectively.

Prediction gain (PG). Prediction gain is defined as the
instantaneous change in loss for a sample x, before and
after training on x:

νPG := L(x, θ)− L(x, θ′).

For Bayesian mixture models, prediction gain upper
bounds the model’s information gain (Bellemare et al.,
2016), and is therefore closely related to the Bayesian pre-
cept that learning is a change in posterior.

Gradient prediction gain (GPG). Computing predic-
tion gain requires an additional forward pass. When pθ is
differentiable, an alternative is to consider the first-order
Taylor series approximation to prediction gain:

L(x, θ′) ≈ L(x, θ) + [∇L(x, θ)]
>

∆θ,

where ∆θ is the descent step. Taking this step to be the
negative gradient −∇θL(x, θ) we obtain the gradient pre-
diction gain

νGPG := ‖∇L(x, θ)‖22.

This measures the magnitude of the gradient vector, which
has been used an indicator of salience in the active learning
literature (Settles et al., 2008). We show in Section 3.3
that gradient prediction gain is a biased estimate of true
expected learning progress, and in particular favours tasks
whose loss has higher variance.

Self prediction gain (SPG). Prediction gain is a biased
estimate of the change in Lk(θ), the expected loss on task
k. Having trained on x, we naturally expect the sample loss
L(x, θ) to decrease, even though the loss at other points
may increase. Self prediction gain addresses this issue by
sampling a second time from the same task and estimating
progress on the new sample:

νSPG := L(x′, θ)− L(x′, θ′) x′ ∼ Dk.

Target prediction gain (TPG). We can take the self-
prediction gain idea further and evaluate directly on the
loss of interest, which has has also been considered in ac-
tive learning (Roy and Mccallum, 2001). In the target task
setting, this becomes

νTPG := L(x′, θ)− L(x′, θ′) x′ ∼ DN .
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Although this might seem like the most accurate measure
so far, it tends to suffer from high variance, and also runs
counter to the premise that, early in training, the model can-
not improve on the difficult target task and should instead
train on a task that it can master.

Mean prediction gain (MPG). Mean prediction gain is
the analogue of target prediction gain in the multiple tasks
setting, where it is natural to evaluate our progress across
all tasks. We write

νMPG := L(x′, θ)− L(x′, θ′) x′ ∼ Dk, k ∼ UN ,

where UN denotes the uniform distribution over
{1, . . . , N}. Mean prediction gain has additional
variance from sampling an evaluation task k ∼ UN .

3.2. Complexity-driven Progress

So far we have considered gains that gauge the network’s
learning progress directly, by observing the change in its
predictive ability. We now turn to a novel set of gains that
instead measure the rate at which the network’s complex-
ity increases. These gains are underpinned by the Mini-
mum Description Length principle (MDL; Rissanen, 1986;
Grünwald, 2007): namely that in order to best generalise
from a particular dataset, one should minimise the num-
ber of bits required to describe the model parameters plus
the number of bits required for the model to describe the
data. The MDL principle makes it explicit that increasing
the complexity of the model by a certain amount is only
worthwhile if it reduces the data cost by a greater amount.
We would therefore expect the training examples that in-
duce it to do so to correspond to salient data from which it
is able to generalise. These examples are exactly what we
seek when attempting to maximise learning progress.

MDL training for neural networks (Hinton and Van Camp,
1993) can be practically realised with stochastic variational
inference (Graves, 2011; Kingma et al., 2015; Blundell
et al., 2015). In this framework a variational posterior
Pφ(θ) over the network weights is maintained during train-
ing, with a single weight sample drawn for each training
example. The parameters φ of the posterior are optimised,
rather than θ itself. The total loss is the expected log-loss
of the training dataset1 (which in our case is the complete
curriculum), plus the KL-divergence between the posterior
and some fixed (Blundell et al., 2015) or adaptive (Graves,
2011) prior Qψ(θ):

LV I(φ, ψ) = KL(Pφ ‖Qψ)︸ ︷︷ ︸
model complexity

+
∑

k

∑
x∈Dk

E
θ∼Pφ

L(x, θ)︸ ︷︷ ︸
data cost

.

1MDL deals with sets rather than distributions; in this context
we consider each Dk in the curriculum to be a dataset sampled
from the task distribution, rather than the distribution itself

Following (Graves, 2011) we used an adaptive prior with
two free parameters: a mean and variance that are reused
for every network weight. Since we are using stochastic
gradient descent we need to determine the per-sample loss
for both the model complexity and the data. Defining S :=∑
k |Dk| as the total number of samples in the curriculum

we obtain

LV I(x, φ, ψ) :=
1

S
KL(Pφ ‖Qψ) + E

θ∼Pφ
L(x, θ), (3)

with LV I(φ, ψ) =
∑
k

∑
x∼Dk LV I(x, φ, ψ). Some of the

curricula we consider are algorithmically generated, mean-
ing that the total number of samples is undefined. The treat-
ment suggested by the MDL principle is to divide the com-
plexity cost by the total number of samples generated so
far. However we simplified matters by setting S to a large
constant that roughly matches the number of samples we
expect to see during training. We used a diagonal Gaussian
for both P and Q, allowing us to determine the complexity
cost analytically:

KL(Pφ ‖Qψ) =
(µφ − µψ)2 + σ2

φ − σ2
ψ

2σ2
ψ

+ ln

(
σψ
σφ

)
,

where µφ, σ
2
φ and µψ, σ

2
ψ are the mean and variance

vectors for Pφ and Qψ respectively. We adapted ψ
with gradient descent along with φ, and the gradient
of Eθ∼Pφ L(x, θ) with respect to φ was estimated using
the reparameterisation trick2 (Kingma and Welling, 2013)
with a single Monte-Carlo sample. The SoftPlus function
y = ln(1 + ex) was used to ensure that the variances were
positive (Blundell et al., 2015).

Variational complexity gain (VCG). The increase of
model complexity induced by a training example can be es-
timated from the change in complexity following a single
parameter update from φ to φ′ and ψ to ψ′, yielding

νV CG := KL(Pφ′ ‖Qψ′)−KL(Pφ ‖Qψ)

Gradient variational complexity gain (GVCG). As
with prediction gain, we can derive a first order Taylor ap-
proximation using the direction of gradient descent:

KL(Pφ′ ‖Qψ′) ≈ KL(Pφ ‖Qψ)

− [∇φ,ψKL(Pφ ‖Qψ)]>∇ψ,φLMDL(x, φ, ψ)

=⇒ νV CG ≈ C − [∇φ,ψKL(Pφ ‖Qψ)]>∇φ E
θ∼Pφ

L(x, θ),

2The reparameterisation trick yields a better gradient estimator
for the posterior variance than that used in (Graves, 2011), which
requires either calculation of the diagonal of the Hessian, or a
biased approximation using the empirical Fisher. The gradient
estimator for the posterior mean is the same in both cases.
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where C is a term that does not depend on x and is there-
fore irrelevant to the gain signal. We define gradient varia-
tional complexity gain as

νGV CG := [∇φ,ψKL(Pφ ‖Qψ)]
>∇φ E

θ∼Pφ
L(x, θ),

which is the directional derivative of the KL along the gra-
dient descent direction. We believe that the linear approxi-
mation is more reliable here than for prediction gain, as the
model complexity has less curvature than the loss surface.

Relationship to VIME. Variational Information Maxi-
mizing Exploration (VIME) (Houthooft et al., 2016), uses
a reward signal that is closely related to variational com-
plexity gain. The difference is that while VIME measures
the KL between the posterior before and after a step in pa-
rameter space, VCG considers the change in KL between
the posterior and prior induced by the step. Therefore,
while VIME looks for any change to the posterior, VCG
focuses only on changes that alter the divergence from the
prior. Further research will be needed to assess the relative
merits of the two signals.

L2 gain (L2G). Variational inference tends to slow down
learning, making it appealing to define a complexity-based
progress signal applicable to more conventionally trained
networks. Many of the standard neural network regularisa-
tion terms, such as Lp-norms, can be viewed as defining an
upper bound on model description length (Graves, 2011).
We therefore hypothesize that the increase in regularisation
cost will be indicative of the increase in model complexity.
To test this hypothesis we consider training with a standard
L2 regularisation term added to the loss:

LL2(x, θ) = L(x, θ) +
α

2
‖θ‖22 (4)

where α is an empirically chosen constant. In this case the
complexity gain can be defined as

νL2G := ‖θ′‖22 − ‖θ‖22 (5)

where we have dropped the α/2 term as the gain will any-
way be rescaled to [−1, 1] before use. The corresponding
first-order approximation is

νGL2G := [θ]
>∇θL(x, θ) (6)

It is possible to calculate L2 gain for unregularized net-
works; however we found this an unreliable signal, pre-
sumably because the network has no incentive to decrease
complexity when faced with uninformative data.

3.3. Prediction Gain Bias

Prediction gain, self prediction gain and gradient prediction
gain are all closely related, but incur varying degrees of

bias and variance. We now present a formal analysis of the
biases present in each, noting that a similar treatment can
be applied to our complexity gains.

We first assume that the lossL is locally well-approximated
by its first-order Taylor expansion:

L(x, θ′) ≈ L(x, θ) +∇L(x, θ)>∆θ (7)

where ∆θ := θ′ − θ. For ease of exposition, we also sup-
pose the network is trained with stochastic gradient descent
(the same argument leads to similar conclusions for higher-
order optimization methods):

∆θ := −α∇L(x, θ). (8)

We define the true expected learning progress as

ν := E
x′∼D

[L(θ)− L(θ′)] = α
∥∥ E

x′∼D
∇L(x, θ)

∥∥2,
with the identity following from (8) (recall that L(θ) =
Ex L(θ)). The expected prediction gain is then

νPG = E
x′∼D

[L(x, θ)− L(x, θ′)] = α E
x′∼D

∥∥∇L(x, θ)
∥∥2.

Defining

V
(
∇L(x, θ)

)
:= E

∥∥∇L(x, θ)− E∇L(x′, θ)‖2,

we find that prediction gain is the sum of two terms: true
expected learning progress, plus the gradient variance:

νPG = ν + V
(
∇L(x, θ)

)
.

We conclude that for equal learning progress, a prediction
gain-based curriculum maximizes variance. The problem
is made worse when using gradient prediction gain, which
actually relies on the Taylor approximation (7). On the
other hand, self prediction gain is an unbiased estimate of
expected learning progress:

E
x
νSPG = E

x,x′∼D
[L(x′, θ)− L(x′, θ′)] = ν.

Naturally, its use of two samples results in higher variance
than prediction gain, suggesting a bias-variance trade off
between the two estimates.

4. Experiments
To test our approach, we applied all the gains defined in
the previous section to three task suites: synthetic lan-
guage modelling on text generated by n-gram models, re-
peat copy (Graves et al., 2014) and the bAbI tasks (Weston
et al., 2015)

The network architecture was stacked unidirectional
LSTM (Graves, 2013) for all experiments, and the training
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loss was cross-entropy with either categorical targets and
softmax output, or Bernoulli targets and sigmoid outputs,
optimised by RMSProp with momentum (Tieleman, 2012;
Graves, 2013), using a momentum of 0.9 and a learning rate
of 10−5 unless specified otherwise. The parameters for the
Exp3.S algorithm were η = 10−3, β = 0, ε = 0.05. For
all experiments, one set of networks was trained with varia-
tional inference (VI) to test the variational complexity gain
signals, and another set was trained with normal maximum
likelihood (ML) for the other signals. All experiments were
repeated 10 times with different random initialisations of
the network weights. The α regularisation parameter from
Eq. (4) for the networks trained with L2 gain signals was
10−4 for all experiments. For all plots with a time axis,
time is defined as the total number of input steps processed
so far. In the absence of hand-designed curricula for these
tasks, our performance benchmarks are 1) a fixed uniform
policy over all the tasks and 2) directly training on the tar-
get task (where applicable). All losses and error rates are
measured on independent samples not used for training or
reward calculation.

4.1. N-Gram Language Modelling

For our first experiment, we trained character-level Kneser-
Ney n-gram models (Kneser and Ney, 1995) on the King
James Bible data from the Canterbury corpus (Arnold and
Bell, 1997), with the maximum depth parameter n ranging
between 0 to 10. We then used each model to generate
a separate dataset of 1M characters, which we divided into
disjoint sequences of 150 characters. The first 50 characters
of each sequence were used as burn-in context for the next
100, which the network was trained to predict. The LSTM
network had two layers of 512 cells, and the batch size was
32.

An important characteristic of this dataset is that the
amount of linguistic structure increases monotonically with
n. Simultaneously, the entropy – and hence, minimum
achievable loss – decreases almost monotonically in n. If
we believe that learning progress should be higher for in-
teresting data than for data that is difficult to predict, we
would expect the gain signals to be drawn to higher n: they
should favour structure over noise. Note that in this case
the curriculum is superfluous: the most efficient strategy
for learning the 10-gram source is to directly train on it.

Fig. 1 shows that most of the complexity-based gain signals
from Section 3.2 (L2G, GL2G, GVCG) progress rapidly
through the curriculum before focusing strongly on the 10-
gram task (though interestingly, GVCG appears to revisit 0-
gram later on in training). The clarity of the result is strik-
ing, given that sequences generated from models beyond
about 6-gram are difficult to distinguish by eye. VCG fol-
lows a similar path, but with much less confidence, presum-

Figure 1. N-gram policies for different gain signals, truncated at
2× 108 steps. All curves are averages over 10 runs

ably due to the increased noise. The loss-based measures
(PG, GPG, SPG, TG) also tend to move towards higher n,
although more slowly and with less certainty. Unlike the
complexity gains, they tend to initially favour the lower-n
tasks, which may be desirable as we would expect early
learning to be more efficient with simpler data.

4.2. Repeat Copy

In the repeat copy task (Graves et al., 2014) the network
receives an input sequence of random bit vectors, and is
then asked to output that sequence a given number of times.
The task has two main dimensions of difficulty: the length
of the input sequence and the required number of repeats,
both of which increase the demand on the models memory.
Neural Turing machines are able to learn a ‘for-loop’ like
algorithm on simple examples that can directly generalise
to much harder examples (Graves et al., 2014). For LSTM
networks without access to external memory, however, sig-
nificant retraining is required to adapt to harder tasks.

We devised a curriculum with both the sequence length and
the number of repeats varying from 1 to 13, giving 169
tasks in all, with length 13, repeats 13 defined as the target
task. The LSTM network had a single layer of 512 cells,
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Figure 2. Target task loss (per output), policy entropy and network
complexity for the repeat copy task, truncated at 1.1× 109 steps.
Curves are averages over 10 runs, shaded areas show the standard
deviation. Network complexity was computed by multiplying the
per-sample complexity cost by the total size of the training set.

and the batch size was 32. As the data was generated on-
line, the number of samples S in Eq. (3) (the per-sample VI
loss) was undefined; we arbitrarily set it to 169M (1M per
task in the curriculum).

Fig. 2 shows that GVCG solves the target task about twice
as fast as uniform sampling for VI training, and that the
PG, SPG and TPG gains are somewhat faster than uni-
form for ML training, especially in the early stages. From
the entropy plots it is clear that these signals all lead to
strongly non-uniform policies. The VI complexity curves
also demonstrate that GVCG yields significantly higher
network complexity than uniform sampling, supporting our
hypothesis that increased complexity correlates with learn-
ing progress. Unlike GVCG, the VCG signal did not devi-
ate far from a uniform policy. L2G and particularly GPG
and GL2G were much worse than uniform, suggesting that
(1) the bias induced by the gradient approximation has a
pernicious effect on learning and (2) that the increase in L2
norm is not a reliable measure of increased network com-
plexity. Training directly on the target task failed to learn

at all, underlining the necessity of curriculum learning for
this problem.

Fig. 3 reveals a consistent strategy for the GVCG syl-
labuses, first focusing on short sequences with high repeats,
then long sequences with low repeats, thereby decoupling
the two dimensions of difficulty. At each stage the loss is
substantially reduced across many tasks that the policy does
not focus on. Crucially, this means that the network does
not have to visit each of the 169 tasks to solve them all, and
the syllabus is able to exploit this fact to more efficiently
complete the curriculum.

4.3. Babi

The bAbI dataset (Weston et al., 2015) consists of 20 syn-
thetic question-answering problems designed to probe the
basic reasoning capabilities of machine learning models.
Although bAbI was not specifically designed for curricu-
lum learning, some of the tasks follow a natural ordering
of complexity (e.g. ‘Two Arg Relations’, ‘Three Arg Rela-
tions’) and all are based on a consistent probabilistic gram-
mar, leading us to hope that an efficient syllabus could be
found for learning the whole set. The usual performance
measure for bAbI is the number of tasks ‘completed’ by
the model, where completion is defined as getting less than
5% of the test set questions wrong.

The data representation followed (Graves et al., 2016), with
each word in the observation and target sequences repre-
sented as a 1-hot vector, along with an extra binary channel
to mark answer prompts. The original datasets were small,
with either 1K or 10K questions per task, so as to test gener-
alisation from limited samples. However LSTM is known
to perform poorly in this setting (Sukhbaatar et al., 2015;
Graves et al., 2016), and we wished to avoid the confound-
ing effect of overfitting on curriculum learning. We there-
fore used the bAbI code (Weston et al., 2015) to gener-
ate 1M stories (each containing one or more questions) for
each of the 20 tasks. With so many examples, we found
that training and evaluation set performance were indistin-
guishable, and therefore report training performance only.
The LSTM network had two layer of 512 cells, the batch
size was 16, and the RMSProp learning rate was 3× 10−5.

Fig. 4 shows that prediction gain (PG) clearly improved on
uniform sampling in terms of both learning speed and num-
ber of tasks completed; for self-prediction gain (SPG) the
same benefits were visible, though less pronounced. The
other gains were either roughly equal to or worse than uni-
form. For variational inference training, GVCG was faster
than uniform at first, then slightly worse later on, while
VCG performed poorly for reasons that are unclear to us.
In general, training with variational inference appeared to
hamper progress on the bAbI tasks.
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Figure 3. Average policy and loss per output over time for GVCG networks on the repeat copy task. Plots were made by dividing the
first 4× 108 steps into five equal bins, then averaging over the policies of all 10 networks over all times within each bin.

Figure 4. Completion and entropy curves for the bAbI curriculum,
truncated at 3.5 × 108 steps. Curves are means over ten runs,
shaded areas show standard deviation.

Fig. 5 shows how the PG bandit accelerates the network’s
progress by selectively focusing on specific tasks until
completion. For example, the bandit solves ‘Time Rea-
soning’ much faster than uniform sampling by concentrat-
ing on it early in training, and later focuses strongly on
‘Path Finding’ (one of the harder bAbI tasks) until com-
pletion. Also noteworthy is the way the bandit progresses
from ‘Single Supporting Fact’ to ‘three Supporting Facts’
in order (albeit while completing other tasks), showing that
it can discover implicit orderings, and hence opportunities
for efficient transfer, in an unsorted curriculum.

5. Conclusion
Our experiments suggest that using a stochastic syllabus
to maximise learning progress can lead to significant gains

Figure 5. Per-task policy and error curves for bAbI, truncated at
2× 108 steps. All plots are averaged over 10 runs. Black dashed
lines show the 5% error threshold for task completion.

in curriculum learning efficiency, so long as a suitable
progress signal is used. We note however that uniformly
sampling from all tasks is a surprisingly strong benchmark.
We speculate that this is because learning is dominated by
gradients from the tasks on which the network is making
fastest progress, inducing a kind of implicit curriculum, al-
beit with the inefficiency of unnecessary samples. For max-
imium likelihood training, we found prediction gain to be
the most consistent signal, while for variational inference
training, gradient variational complexity gain performed
best. Importantly, both are instantaneous, in the sense that
they can be evaluated using only the samples used for train-
ing. As well as being more efficient, this has broader appli-
cability to tasks where external evaluation is difficult, and
suggest that learning progress is best assessed on a local,
rather than global basis.
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