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Abstract

We consider an agent’s uncertainty about its environment and the problem of gen-
eralizing this uncertainty across states. Specifically, we focus on the problem of
exploration in non-tabular reinforcement learning. Drawing inspiration from the
intrinsic motivation literature, we use density models to measure uncertainty, and
propose a novel algorithm for deriving a pseudo-count from an arbitrary density
model. This technique enables us to generalize count-based exploration algo-
rithms to the non-tabular case. We apply our ideas to Atari 2600 games, providing
sensible pseudo-counts from raw pixels. We transform these pseudo-counts into
exploration bonuses and obtain significantly improved exploration in a number of
hard games, including the infamously difficult MONTEZUMA’S REVENGE.

1 Introduction

Exploration algorithms for Markov Decision Processes (MDPs) are typically concerned with re-
ducing the agent’s uncertainty over the environment’s reward and transition functions. In a tabular
setting, this uncertainty can be quantified using confidence intervals derived from Chernoff bounds,
or inferred from a posterior over the environment parameters. In fact, both confidence intervals
and posterior shrink as the inverse square root of the state-action visit count N(x, a), making this
quantity fundamental to most theoretical results on exploration.

Count-based exploration methods directly use visit counts to guide an agent’s behaviour towards
reducing uncertainty. For example, Model-based Interval Estimation with Exploration Bonuses
(MBIE-EB; Strehl and Littman, 2008) solves the augmented Bellman equation

V (x) = max
a∈A

[
R̂(x, a) + γ EP̂ [V (x′)] + βN(x, a)−1/2

]
,

involving the empirical reward R̂, the empirical transition function P̂ , and an exploration bonus
proportional to N(x, a)−1/2. This bonus accounts for uncertainties in both transition and reward
functions and enables a finite-time bound on the agent’s suboptimality.

In spite of their pleasant theoretical guarantees, count-based methods have not played a role in the
contemporary successes of reinforcement learning (e.g. Mnih et al., 2015). Instead, most practical
methods still rely on simple rules such as ε-greedy. The issue is that visit counts are not directly
useful in large domains, where states are rarely visited more than once.

Answering a different scientific question, intrinsic motivation aims to provide qualitative guidance
for exploration (Schmidhuber, 1991; Oudeyer et al., 2007; Barto, 2013). This guidance can be
summarized as “explore what surprises you”. A typical approach guides the agent based on change
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in prediction error, or learning progress. If en(A) is the error made by the agent at time n over
some event A, and en+1(A) the same error after observing a new piece of information, then learning
progress is

en(A)− en+1(A).

Intrinsic motivation methods are attractive as they remain applicable in the absence of the Markov
property or the lack of a tabular representation, both of which are required by count-based algo-
rithms. Yet the theoretical foundations of intrinsic motivation remain largely absent from the litera-
ture, which may explain its slow rate of adoption as a standard approach to exploration.

In this paper we provide formal evidence that intrinsic motivation and count-based exploration are
but two sides of the same coin. Specifically, we consider a frequently used measure of learning
progress, information gain (Cover and Thomas, 1991). Defined as the Kullback-Leibler divergence
of a prior distribution from its posterior, information gain can be related to the confidence intervals
used in count-based exploration. Our contribution is to propose a new quantity, the pseudo-count,
which connects information-gain-as-learning-progress and count-based exploration.

We derive our pseudo-count from a density model over the state space. This is in departure from
more traditional approaches to intrinsic motivation that consider learning progress with respect to
a transition model. We expose the relationship between pseudo-counts, a variant of Schmidhuber’s
compression progress we call prediction gain, and information gain. Combined to Kolter and Ng’s
negative result on the frequentist suboptimality of Bayesian bonuses, our result highlights the theo-
retical advantages of pseudo-counts compared to many existing intrinsic motivation methods.

The pseudo-counts we introduce here are best thought of as “function approximation for explo-
ration”. We bring them to bear on Atari 2600 games from the Arcade Learning Environment (Belle-
mare et al., 2013), focusing on games where myopic exploration fails. We extract our pseudo-counts
from a simple density model and use them within a variant of MBIE-EB. We apply them to an ex-
perience replay setting and to an actor-critic setting, and find improved performance in both cases.
Our approach produces dramatic progress on the reputedly most difficult Atari 2600 game, MON-
TEZUMA’S REVENGE: within a fraction of the training time, our agent explores a significant portion
of the first level and obtains significantly higher scores than previously published agents.

2 Notation

We consider a countable state space X . We denote a sequence of length n from X by x1:n ∈ Xn,
the set of finite sequences from X by X ∗, write x1:nx to mean the concatenation of x1:n and a state
x ∈ X , and denote the empty sequence by ε. A model over X is a mapping from X ∗ to probability
distributions over X . That is, for each x1:n ∈ Xn the model provides a probability distribution

ρn(x) := ρ(x ; x1:n).

Note that we do not require ρn(x) to be strictly positive for all x and x1:n. When it is, however, we
may understand ρn(x) to be the usual conditional probability ofXn+1 = x givenX1 . . . Xn = x1:n.

We will take particular interest in the empirical distribution µn derived from the sequence x1:n. If
Nn(x) := N(x, x1:n) is the number of occurrences of a state x in the sequence x1:n, then

µn(x) := µ(x ; x1:n) :=
Nn(x)

n
.

We call the Nn the empirical count function, or simply empirical count. The above notation extends
to state-action spaces, and we write Nn(x, a) to explicitly refer to the number of occurrences of a
state-action pair when the argument requires it. When x1:n is generated by an ergodic Markov chain,
for example if we follow a fixed policy in a finite-state MDP, then the limit point of µn is the chain’s
stationary distribution.

In our setting, a density model is any model that assumes states are independently (but not necessarily
identically) distributed; a density model is thus a particular kind of generative model. We emphasize
that a density model differs from a forward model, which takes into account the temporal relationship
between successive states. Note that µn is itself a density model.
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3 From Densities to Counts

In the introduction we argued that the visit countNn(x) (and consequently, Nn(x, a)) is not directly
useful in practical settings, since states are rarely revisited. Specifically, Nn(x) is almost always
zero and cannot help answer the question “How novel is this state?” Nor is the problem solved
by a Bayesian approach: even variable-alphabet models (e.g. Hutter, 2013) must assign a small,
diminishing probability to yet-unseen states. To estimate the uncertainty of an agent’s knowledge,
we must instead look for a quantity which generalizes across states. Guided by ideas from the
intrinsic motivation literature, we now derive such a quantity. We call it a pseudo-count as it extends
the familiar notion from Bayesian estimation.

3.1 Pseudo-Counts and the Recoding Probability

We are given a density model ρ over X . This density model may be approximate, biased, or even
inconsistent. We begin by introducing the recoding probability of a state x:

ρ′n(x) := ρ(x ; x1:nx).

This is the probability assigned to x by our density model after observing a new occurrence of x.
The term “recoding” is inspired from the statistical compression literature, where coding costs are
inversely related to probabilities (Cover and Thomas, 1991). When ρ admits a conditional probabil-
ity distribution,

ρ′n(x) = Prρ(Xn+2 = x |X1 . . . Xn = x1:n, Xn+1 = x).

We now postulate two unknowns: a pseudo-count function N̂n(x), and a pseudo-count total n̂. We
relate these two unknowns through two constraints:

ρn(x) =
N̂n(x)

n̂
ρ′n(x) =

N̂n(x) + 1

n̂+ 1
. (1)

In words: we require that, after observing one instance of x, the density model’s increase in predic-
tion of that same x should correspond to a unit increase in pseudo-count. The pseudo-count itself is
derived from solving the linear system (1):

N̂n(x) =
ρn(x)(1− ρ′n(x))

ρ′n(x)− ρn(x)
= n̂ρn(x). (2)

Note that the equations (1) yield N̂n(x) = 0 (with n̂ = ∞) when ρn(x) = ρ′n(x) = 0, and are
inconsistent when ρn(x) < ρ′n(x) = 1. These cases may arise from poorly behaved density models,
but are easily accounted for. From here onwards we will assume a consistent system of equations.
Definition 1 (Learning-positive density model). A density model ρ is learning-positive if for all
x1:n ∈ Xn and all x ∈ X , ρ′n(x) ≥ ρn(x).

By inspecting (2), we see that

1. N̂n(x) ≥ 0 if and only if ρ is learning-positive;

2. N̂n(x) = 0 if and only if ρn(x) = 0; and

3. N̂n(x) =∞ if and only if ρn(x) = ρ′n(x).

In many cases of interest, the pseudo-count N̂n(x) matches our intuition. If ρn = µn then N̂n = Nn.
Similarly, if ρn is a Dirichlet estimator then N̂n recovers the usual notion of pseudo-count. More
importantly, if the model generalizes across states then so do pseudo-counts.

3.2 Estimating the Frequency of a Salient Event in FREEWAY

As an illustrative example, we employ our method to estimate the number of occurrences of an
infrequent event in the Atari 2600 video game FREEWAY (Figure 1, screenshot). We use the Arcade
Learning Environment (Bellemare et al., 2013). We will demonstrate the following:

1. Pseudo-counts are roughly zero for novel events,
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Figure 1: Pseudo-counts obtained from a CTS density model applied to FREEWAY, along with a
frame representative of the salient event (crossing the road). Shaded areas depict periods during
which the agent observes the salient event, dotted lines interpolate across periods during which the
salient event is not observed. The reported values are 10,000-frame averages.

2. they exhibit credible magnitudes,

3. they respect the ordering of state frequency,

4. they grow linearly (on average) with real counts,

5. they are robust in the presence of nonstationary data.

These properties suggest that pseudo-counts provide an appropriate generalized notion of visit
counts in non-tabular settings.

In FREEWAY, the agent must navigate a chicken across a busy road. As our example, we consider
estimating the number of times the chicken has reached the very top of the screen. As is the case for
many Atari 2600 games, this naturally salient event is associated with an increase in score, which
ALE translates into a positive reward. We may reasonably imagine that knowing how certain we
are about this part of the environment is useful. After crossing, the chicken is teleported back to the
bottom of the screen.

To highlight the robustness of our pseudo-count, we consider a nonstationary policy which waits for
250,000 frames, then applies the UP action for 250,000 frames, then waits, then goes UP again. The
salient event only occurs during UP periods. It also occurs with the cars in different positions, thus
requiring generalization. As a point of reference, we record the pseudo-counts for both the salient
event and visits to the chicken’s start position.

We use a simplified, pixel-level version of the CTS model for Atari 2600 frames proposed by Belle-
mare et al. (2014), ignoring temporal dependencies. While the CTS model is rather impoverished in
comparison to state-of-the-art density models for images (e.g. Van den Oord et al., 2016), its count-
based nature results in extremely fast learning, making it an appealing candidate for exploration.
Further details on the model may be found in the appendix.

Examining the pseudo-counts depicted in Figure 1 confirms that they exhibit the desirable properties
listed above. In particular, the pseudo-count is almost zero on the first occurrence of the salient event;
it increases slightly during the 3rd period, since the salient and reference events share some common
structure; throughout, it remains smaller than the reference pseudo-count. The linearity on average
and robustness to nonstationarity are immediate from the graph. Note, however, that the pseudo-
counts are a fraction of the real visit counts (inasmuch as we can define “real”): by the end of the
trial, the start position has been visited about 140,000 times, and the topmost part of the screen, 1285
times. Furthermore, the ratio of recorded pseudo-counts differs from the ratio of real counts. Both
effects are quantifiable, as we shall show in Section 5.

4 The Connection to Intrinsic Motivation

Having argued that pseudo-counts appropriately generalize visit counts, we will now show that they
are closely related to information gain, which is commonly used to quantify novelty or curiosity and
consequently as an intrinsic reward. Information gain is defined in relation to a mixture model ξ over
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a class of density modelsM. This model predicts according to a weighted combination fromM:

ξn(x) := ξ(x ; x1:n) :=

∫
ρ∈M

wn(ρ)ρ(x ; x1:n)dρ,

with wn(ρ) the posterior weight of ρ. This posterior is defined recursively, starting from a prior
distribution w0 overM:

wn+1(ρ) := wn(ρ, xn+1) wn(ρ, x) :=
wn(ρ)ρ(x ; x1:n)

ξn(x)
. (3)

Information gain is then the Kullback-Leibler divergence from prior to posterior that results from
observing x:

IGn(x) := IG(x ; x1:n) := KL
(
wn(·, x) ‖wn

)
.

Computing the information gain of a complex density model is often impractical, if not downright
intractable. However, a quantity which we call the prediction gain provides us with a good approxi-
mation of the information gain. We define the prediction gain of a density model ρ (and in particular,
ξ) as the difference between the recoding log-probability and log-probability of x:

PGn(x) := log ρ′n(x)− log ρn(x).

Prediction gain is nonnegative if and only if ρ is learning-positive. It is related to the pseudo-count:

N̂n(x) ≈
(
ePGn(x) − 1

)−1
,

with equality when ρ′n(x)→ 0. As the following theorem shows, prediction gain allows us to relate
pseudo-count and information gain.
Theorem 1. Consider a sequence x1:n ∈ Xn. Let ξ be a mixture model over a class of learning-
positive modelsM. Let N̂n be the pseudo-count derived from ξ (Equation 2). For this model,

IGn(x) ≤ PGn(x) ≤ N̂n(x)−1 and PGn(x) ≤ N̂n(x)−1/2.

Theorem 1 suggests that using an exploration bonus proportional to N̂n(x)−1/2, similar to the
MBIE-EB bonus, leads to a behaviour at least as exploratory as one derived from an information
gain bonus. Since pseudo-counts correspond to empirical counts in the tabular setting, this approach
also preserves known theoretical guarantees. In fact, we are confident pseudo-counts may be used
to prove similar results in non-tabular settings.

On the other hand, it may be difficult to provide theoretical guarantees about existing bonus-based
intrinsic motivation approaches. Kolter and Ng (2009) showed that no algorithm based on a bonus
upper bounded by βNn(x)−1 for any β > 0 can guarantee PAC-MDP optimality. Again considering
the tabular setting and combining their result to Theorem 1, we conclude that bonuses proportional
to immediate information (or prediction) gain are insufficient for theoretically near-optimal explo-
ration: to paraphrase Kolter and Ng, these methods produce explore too little in comparison to
pseudo-count bonuses. By inspecting (2) we come to a similar negative conclusion for bonuses
proportional to the L1 or L2 distance between ξ′n and ξn.

Unlike many intrinsic motivation algorithms, pseudo-counts also do not rely on learning a forward
(transition and/or reward) model. This point is especially important because a number of powerful
density models for images exist (Van den Oord et al., 2016), and because optimality guarantees
cannot in general exist for intrinsic motivation algorithms based on forward models.

5 Asymptotic Analysis

In this section we analyze the limiting behaviour of the ratio N̂n/Nn. We use this analysis to assert
the consistency of pseudo-counts derived from tabular density models, i.e. models which maintain
per-state visit counts. In the appendix we use the same result to bound the approximation error of
pseudo-counts derived from directed graphical models, of which our CTS model is a special case.

Consider a fixed, infinite sequence x1, x2, . . . fromX . We define the limit of a sequence of functions(
f(x ; x1:n) : n ∈ N

)
with respect to the length n of the subsequence x1:n. We additionally assume

that the empirical distribution µn converges pointwise to a distribution µ, and write µ′n(x) for the
recoding probability of x under µn. We begin with two assumptions on our density model.
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Assumption 1. The limits

(a) r(x) := lim
n→∞

ρn(x)

µn(x)
(b) ṙ(x) := lim

n→∞

ρ′n(x)− ρn(x)

µ′n(x)− µn(x)

exist for all x; furthermore, ṙ(x) > 0.

Assumption (a) states that ρ should eventually assign a probability to x proportional to the limiting
empirical distribution µ(x). In particular there must be a state x for which r(x) < 1, unless ρn → µ.
Assumption (b), on the other hand, imposes a restriction on the learning rate of ρ relative to µ’s. As
both r(x) and µ(x) exist, Assumption 1 also implies that ρn(x) and ρ′n(x) have a common limit.

Theorem 2. Under Assumption 1, the limit of the ratio of pseudo-counts N̂n(x) to empirical counts
Nn(x) exists for all x. This limit is

lim
n→∞

N̂n(x)

Nn(x)
=
r(x)

ṙ(x)

(
1− µ(x)r(x)

1− µ(x)

)
.

The model’s relative rate of change, whose convergence to ṙ(x) we require, plays an essential role
in the ratio of pseudo- to empirical counts. To see this, consider a sequence (xn : n ∈ N) generated
i.i.d. from a distribution µ over a finite state space, and a density model defined from a sequence of
nonincreasing step-sizes (αn : n ∈ N):

ρn(x) = (1− αn)ρn−1(x) + αnI {xn = x} ,
with initial condition ρ0(x) = |X |−1. For αn = n−1, this density model is the empirical distribu-
tion. For αn = n−2/3, we may appeal to well-known results from stochastic approximation (e.g.
Bertsekas and Tsitsiklis, 1996) and find that almost surely

lim
n→∞

ρn(x) = µ(x) but lim
n→∞

ρ′n(x)− ρn(x)

µ′n(x)− µn(x)
=∞.

Since µ′n(x) − µn(x) = n−1(1 − µ′n(x)), we may think of Assumption 1(b) as also requiring ρ
to converge at a rate of Θ(1/n) for a comparison with the empirical count Nn to be meaningful.
Note, however, that a density model that does not satisfy Assumption 1(b) may still yield useful (but
incommensurable) pseudo-counts.
Corollary 1. Let φ(x) > 0 with

∑
x∈X φ(x) <∞ and consider the count-based estimator

ρn(x) =
Nn(x) + φ(x)

n+
∑
x′∈X φ(x′)

.

If N̂n is the pseudo-count corresponding to ρn then N̂n(x)/Nn(x)→ 1 for all x with µ(x) > 0.

6 Empirical Evaluation

In this section we demonstrate the use of pseudo-counts to guide exploration. We return to the
Arcade Learning Environment, now using the CTS model to generate an exploration bonus.

6.1 Exploration in Hard Atari 2600 Games

From 60 games available through the Arcade Learning Environment we selected five “hard” games,
in the sense that an ε-greedy policy is inefficient at exploring them. We used a bonus of the form

R+
n (x, a) := β(N̂n(x) + 0.01)−1/2, (4)

where β = 0.05 was selected from a coarse parameter sweep. We also compared our method to the
optimistic initialization trick proposed by Machado et al. (2015). We trained our agents’ Q-functions
with Double DQN (van Hasselt et al., 2016), with one important modification: we mixed the Double
Q-Learning target with the Monte Carlo return. This modification led to improved results both with
and without exploration bonuses (details in the appendix).

Figure 2 depicts the result of our experiment, averaged across 5 trials. Although optimistic ini-
tialization helps in FREEWAY, it otherwise yields performance similar to DQN. By contrast, the

6



Sc
or

e

Training frames (millions)

FREEWAYMONTEZUMA’S REVENGE PRIVATE EYEH.E.R.O.VENTURE

Figure 2: Average training score with and without exploration bonus or optimistic initialization in 5
Atari 2600 games. Shaded areas denote inter-quartile range, dotted lines show min/max scores.
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Figure 3: “Known world” of a DQN agent trained for 50 million frames with (right) and without
(left) count-based exploration bonuses, in MONTEZUMA’S REVENGE.

count-based exploration bonus enables us to make quick progress on a number of games, most dra-
matically in MONTEZUMA’S REVENGE and VENTURE.

MONTEZUMA’S REVENGE is perhaps the hardest Atari 2600 game available through the ALE. The
game is infamous for its hostile, unforgiving environment: the agent must navigate a number of
different rooms, each filled with traps. Due to its sparse reward function, most published agents
achieve an average score close to zero and completely fail to explore most of the 24 rooms that
constitute the first level (Figure 3, top). By contrast, within 50 million frames our agent learns a
policy which consistently navigates through 15 rooms (Figure 3, bottom). Our agent also achieves a
score higher than anything previously reported, with one run consistently achieving 6600 points by
100 million frames (half the training samples used by Mnih et al. (2015)). We believe the success of
our method in this game is a strong indicator of the usefulness of pseudo-counts for exploration.1

6.2 Exploration for Actor-Critic Methods

We next used our exploration bonuses in conjunction with the A3C (Asynchronous Advantage
Actor-Critic) algorithm of Mnih et al. (2016). One appeal of actor-critic methods is their explicit
separation of policy and Q-function parameters, which leads to a richer behaviour space. This very
separation, however, often leads to deficient exploration: to produce any sensible results, the A3C
policy must be regularized with an entropy cost. We trained A3C on 60 Atari 2600 games, with and
without the exploration bonus (4). We refer to our augmented algorithm as A3C+. Full details and
additional results may be found in the appendix.

We found that A3C fails to learn in 15 games, in the sense that the agent does not achieve a score
50% better than random. In comparison, there are only 10 games for which A3C+ fails to improve on
the random agent; of these, 8 are games where DQN fails in the same sense. We normalized the two
algorithms’ scores so that 0 and 1 are respectively the minimum and maximum of the random agent’s
and A3C’s end-of-training score on a particular game. Figure 4 depicts the in-training median score
for A3C and A3C+, along with 1st and 3rd quartile intervals. Not only does A3C+ achieve slightly
superior median performance, but it also significantly outperforms A3C on at least a quarter of the
games. This is particularly important given the large proportion of Atari 2600 games for which an
ε-greedy policy is sufficient for exploration.

7 Related Work

Information-theoretic quantities have been repeatedly used to describe intrinsically motivated be-
haviour. Closely related to prediction gain is Schmidhuber (1991)’s notion of compression progress,

1A video of our agent playing is available at https://youtu.be/0yI2wJ6F8r0.
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Figure 4: Median and interquartile performance across 60 Atari 2600 games for A3C and A3C+.

which equates novelty with an agent’s improvement in its ability to compress its past. More recently,
Lopes et al. (2012) showed the relationship between time-averaged prediction gain and visit counts
in a tabular setting; their result is a special case of Theorem 2. Orseau et al. (2013) demonstrated
that maximizing the sum of future information gains does lead to optimal behaviour, even though
maximizing immediate information gain does not (Section 4). Finally, there may be a connection be-
tween sequential normalized maximum likelihood estimators and our pseudo-count derivation (see
e.g. Ollivier, 2015).

Intrinsic motivation has also been studied in reinforcement learning proper, in particular in the con-
text of discovering skills (Singh et al., 2004; Barto, 2013). Recently, Stadie et al. (2015) used a
squared prediction error bonus for exploring in Atari 2600 games. Closest to our work is Houthooft
et al. (2016)’s variational approach to intrinsic motivation, which is equivalent to a second order Tay-
lor approximation to prediction gain. Mohamed and Rezende (2015) also considered a variational
approach to the different problem of maximizing an agent’s ability to influence its environment.

Aside for Orseau et al.’s above-cited work, it is only recently that theoretical guarantees for explo-
ration have emerged for non-tabular, stateful settings. We note Pazis and Parr (2016)’s PAC-MDP
result for metric spaces and Leike et al. (2016)’s asymptotic analysis of Thompson sampling in
general environments.

8 Future Directions

The last few years have seen tremendous advances in learning representations for reinforcement
learning. Surprisingly, these advances have yet to carry over to the problem of exploration. In this
paper, we reconciled counts, the fundamental unit of uncertainty, with prediction-based heuristics
and intrinsic motivation. Combining our work with more ideas from deep learning and better density
models seems a plausible avenue for quick progress in practical, efficient exploration. We now
conclude by outlining a few research directions we believe are promising.

Induced metric. We did not address the question of where the generalization comes from. Clearly,
the choice of density model induces a particular metric over the state space. A better understanding
of this metric should allow us to tailor the density model to the problem of exploration.

Compatible value function. There may be a mismatch in the learning rates of the density model
and the value function: DQN learns much more slowly than our CTS model. As such, it should be
beneficial to design value functions compatible with density models (or vice-versa).

The continuous case. Although we focused here on countable state spaces, we can as easily define a
pseudo-count in terms of probability density functions. At present it is unclear whether this provides
us with the right notion of counts for continuous spaces.
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A The Connection to Intrinsic Motivation

The following provides an identity connecting information gain and prediction gain.

Lemma 1. Consider a mixture model ξ over M with prediction gain PGn and information gain
IGn, a fixed x ∈ X , and let w′n(x) := wn(ρ, x) be the posterior of ξ overM after observing x. Let
w′′n(x) := w′n(ρ, x) be the same posterior after observing x a second time, and let PGρn(x) denote
the prediction gain of ρ ∈M. Then

PGn(x) = KL(w′n ‖wn) + KL(w′n ‖w′′n) = IGn(x) + KL(w′n ‖w′′n) + Ew′
n

[PGρn(x)] .

In particular, ifM is a class of non-adaptive models in the sense that ρn(x) = ρ(x) for all x1:n,
then

PGn(x) = KL(w′n ‖wn) + KL(w′n ‖w′′n) = IGn(x) + KL(w′n ‖w′′n).

A model which is non-adaptive is also learning-positive in the sense of Definition 1. Many com-
mon mixture models, for example Dirichlet-multinomial estimators, are mixtures over non-adaptive
models.

Proof. We rewrite the posterior update rule (3) to show that for any ρ ∈M and any x ∈ X ,

ξn(x) =
ρn(x)wn(ρ)

wn(ρ, x)
.

Write Ew′
n

:= Eρ∼w′
n(·). Now

PGn(x) = log
ξ′n(x)

ξn(x)
= Ew′

n

[
log

ξ′n(x)

ξn(x)

]
= Ew′

n

[
log

w′n(ρ)

w′′n(ρ)

w′n(ρ)

wn(ρ)

ρ′n(x)

ρn(x)

]
= Ew′

n

[
log

w′n(ρ)

wn(ρ)

]
+ Ew′

n

[
log

w′n(ρ)

w′′n(ρ)

]
+ Ew′

n

[
log

ρ′n(x)

ρn(x)

]
= IGn(x) + KL(w′n ‖w′′n) + Ew′

n
[PGρn(x)] .

The second statement follows immediately.

Lemma 2. The functions f(x) := ex−1−x and g(x) := ex−1−x2 are nonnegative on x ∈ [0,∞).
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Proof. The statement regarding f(x) follows directly from the Taylor expansion for ex. Now, the
first derivative of g(x) is ex − 2x. It is clearly positive for x ≥ 1. For x ∈ [0, 1],

ex − 2x =

∞∑
i=0

xi

i!
− 2x ≥ 1− x ≥ 0.

Since g(0) = 0, the second result follows.

Proof (Theorem 1). The inequality IGn(x) ≤ PGn(x) follows directly from Lemma 1, the nonneg-
ativity of the Kullback-Leibler divergence, and the fact that all models inM are learning-positive.
For the inequality PGn(x) ≤ N̂n(x)−1, we write

N̂n(x)−1 = (1− ξ′n(x))−1
ξ′n(x)− ξn(x)

ξn(x)

= (1− ξ′n(x))−1
(
ξ′n(x)

ξn(x)
− 1

)
(a)
= (1− ξ′n(x))−1

(
ePGn(x) − 1

)
(b)

≥ ePGn(x) − 1

(c)

≥ PGn(x),

where (a) follows by definition of prediction gain, (b) from ξ′n(x) ∈ [0, 1), and (c) from Lemma 2.
Using the second part of Lemma 2 in (c) yields the inequality N̂n(x)−1/2 ≥ PGn(x).

B Asymptotic Analysis

We begin with a simple lemma which will prove useful throughout.
Lemma 3. The rate of change of the empirical distribution, µ′n(x)− µn(x), is such that

n
(
µ′n(x)− µn(x)

)
= 1− µ′n(x).

Proof. We expand the definition of µn and µ′n:

n
(
µ′n(x)− µn(x)

)
= n

[
Nn(x) + 1

n+ 1
− Nn(x)

n

]
=

[
n

n+ 1

(
Nn(x) + 1

)
−Nn(x)

]
=

[
1− Nn(x) + 1

n+ 1

]
= 1− µ′n(x).

Using this lemma, we derive an asymptotic relationship between Nn and N̂n.

Proof (Theorem 2). We expand the definition of N̂n(x) and Nn(x):

N̂n(x)

Nn(x)
=

ρn(x)(1− ρ′n(x))

Nn(x)(ρ′n(x)− ρn(x))

=
ρn(x)(1− ρ′n(x))

nµn(x)(ρ′n(x)− ρn(x))

=
ρn(x)(µ′n(x)− µn(x))

µn(x)(ρ′n(x)− ρn(x))

1− ρ′n(x)

n(µ′n(x)− µn(x))

=
ρn(x)

µn(x)

µ′n(x)− µn(x)

ρ′n(x)− ρn(x)

1− ρ′n(x)

1− µ′n(x)
,
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with the last line following from Lemma 3. Under Assumption 1, all terms of the right-hand side
converge as n→∞. Taking the limit on both sides,

lim
n→∞

N̂n(x)

Nn(x)

(a)
=

r(x)

ṙ(x)
lim
n→∞

1− ρ′n(x)

1− µ′n(x)

(b)
=
r(x)

ṙ(x)

1− µ(x)r(x)

1− µ(x)
,

where (a) is justified by the existence of the relevant limits and ṙ(x) > 0, and (b) follows from
writing ρ′n(x) as µn(x)ρ′n(x)/µn(x), where all limits involved exist.

B.1 Directed Graphical Models

We say that X is a factored state space if it is the Cartesian product of k subspaces, i.e. X :=
X1 × · · · × Xk. This factored structure allows us to construct approximate density models over X ,
for example by modelling the joint density as a product of marginals. We write the ith factor of a
state x ∈ X as xi, and write the sequence of the ith factor across x1:n as xi1:n.

We will show that directed graphical models (Wainwright and Jordan, 2008) satisfy Assumption 1.
A directed graphical model describes a probability distribution over a factored state space. To the ith

factor xi is associated a parent set π(i) ⊆ {1, . . . , i− 1}. Let xπ(i) denote the value of the factors in
the parent set. The ith factor model is ρin(xi ; xπ(i)) := ρi(xi ; x1:n, x

π(i)), with the understanding
that ρi is allowed to make a different prediction for each value of xπ(i). The state x is assigned the
joint probability

ρGM(x ; x1:n) :=

k∏
i=1

ρin(xi ; xπ(i)).

Common choices for ρin include the conditional empirical distribution and the Dirichlet estimator.
Proposition 1. Suppose that each factor model ρin converges to the conditional probability distri-
bution µ(xi |xπ(i)) and that for each xi with µ(xi |xπ(i)),

lim
n→∞

ρi(xi ; x1:nx, x
π(i))− ρi(xi ; x1:n, x

π(i))

µ(xi ; x1:nx, xπ(i))− µ(xi ; x1:n, xπ(i))
= 1.

Then for all x with µ(x) > 0, the density model ρGM satisfies Assumption 1 with

r(x) =

∏k
i=1 µ(xi |xπ(i))

µ(x)
and ṙ(x) =

∑k
i=1

(
1− µ(xi |xπ(i))

)∏
j 6=i µ(xj |xπ(j))

1− µ(x)
.

The CTS density model used in our experiments is in fact a particular kind of induced graphical
model. The result above thus describes how the pseudo-counts computed in Section 3.2 are asymp-
totically related to the empirical counts.

Proof. By hypothesis, ρin → µ(xi |xπ(i)). Combining this with µn(x)→ µ(x) > 0,

r(x) = lim
n→∞

ρDGM(x ; x1:n)

µn(x)

= lim
n→∞

∏k
i=1 ρ

i
n(xi ; xπ(i))

µn(x)

=

∏k
i=1 µ(xi |xπ(i))

µ(x)
.

Similarly,

ṙ(x) = lim
n→∞

ρ′DGM(x ; x1:n)− ρDGM(x ; x1:n)

µ′n(x)− µn(x)

(a)
= lim

n→∞

(
ρ′DGM(x ; x1:n)− ρDGM(x ; x1:n)

)
n

1− µ′n(x)

= lim
n→∞

(
ρ′DGM(x ; x1:n)− ρDGM(x ; x1:n)

)
n

1− µ(x)
,
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where in (a) we used the identity n(µ′n(x)− µn(x)) = 1− µ′n(x) derived in the proof of Theorem
2. Now

ṙ(x) = (1− µ(x))−1 lim
n→∞

(
ρ′DGM(x ; x1:n)− ρDGM(x ; x1:n)

)
n

= (1− µ(x))−1 lim
n→∞

( k∏
i=1

ρi(xi ; x1:nx, x
π(i))−

k∏
i=1

ρi(xi ; x1:n, x
π(i))

)
n.

Let ci := ρi(xi ; x1:n, x
π(i)) and c′i := ρi(xi ; x1:nx, x

π(i)). The difference of products above is( k∏
i=1

ρi(xi ; x1:nx, x
π(i))−

k∏
i=1

ρi(xi ; x1:n, x
π(i))

)
=
(
c′1c
′
2 . . . c

′
k − c1c2 . . . ck

)
= (c′1 − c1)(c′2 . . . c

′
k) + c1(c′2 . . . c

′
k − c2 . . . ck)

=

k∑
i=1

(c′i − ci)
(∏
j<i

cj

)(∏
j>i

c′j

)
,

and

ṙ(x) = (1− µ(x))−1 lim
n→∞

k∑
i=1

n(c′i − ci)
(∏
j<i

cj

)(∏
j>i

c′j

)
.

By the hypothesis on the rate of change of ρi and the identity
n
(
µ(xi ; x1:nx, x

π(i))− µ(xi ; x1:n, x
π(i))

)
= 1− µ(xi |xπ(i)), we have

lim
n→∞

n(c′i − ci) = 1− µ(xi |xπ(i)).

Since the limits of c′i and ci are both µ(xi |xπ(i)), we deduce that

ṙ(x) =

∑k
i=1

(
1− µ(xi |xπ(i)

)∏
j 6=i µ(xj |xπj(x))

1− µ(x)
.

Now, if µ(x) > 0 then also µ(xi ; xπ(i)) > 0 for each factor xi. Hence ṙ(x) > 0.

B.2 Tabular Density Models (Corollary 1)

We shall prove the following, which includes Corollary 1 as a special case.
Lemma 4. Consider φ : X × X ∗ → R+. Suppose that for all (xn : n ∈ N) and every x ∈ X

1. lim
n→∞

1
n

∑
x∈X

φ(x, x1:n) = 0, and

2. lim
n→∞

(
φ(x, x1:nx)− φ(x, x1:n)

)
= 0.

Let ρn(x) be the count-based estimator

ρn(x) =
Nn(x) + φ(x, x1:n)

n+
∑
x∈X φ(x, x1:n)

.

If N̂n is the pseudo-count corresponding to ρn then N̂n(x)/Nn(x)→ 1 for all x with µ(x) > 0.

Condition 2 is satisfied if φn(x, x1:n) = un(x)φn with φn monotonically increasing in n (but not
too quickly!) and un(x) converging to some distribution u(x) for all sequences (xn : n ∈ N). This
is the case for most tabular density models.

Proof. We will show that the condition on the rate of change required by Proposition 1 is satisfied
under the stated conditions. Let φn(x) := φ(x, x1:n), φ′n(x) := φ(x, x1:nx), φn :=

∑
x∈X φn(x)

and φ′n :=
∑
x∈X φ

′
n(x). By hypothesis,

ρn(x) =
Nn(x) + φn(x)

n+ φn
ρ′n(x) =

Nn(x) + φ′n(x) + 1

n+ φ′n + 1
.
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Note that we do not require φn(x) = φ′n(x). Now

ρ′n(x)− ρn(x) =
n+ φn
n+ φn

ρ′n(x)− ρn(x)

=
n+ 1 + φ′n
n+ φn

ρ′n(x)− ρn(x)− (1 + (φ′n − φn))ρ′n(x)

n+ φn

=
1

n+ φn

[
(Nn(x) + 1 + φ′n(x)− (Nn(x) + φn(x))− (1 + (φ′n − φn))ρ′n(x)

]
=

1

n+ φn

[
1− ρ′n(x) +

(
φ′n(x)− φn(x)

)
− ρ′n(x)

(
φ′n − φn

)]
.

Using Lemma 3 we deduce that

ρ′n(x)− ρn(x)

µ′n(x)− µn(x)
=

n

n+ φn

1− ρ′n(x) + φ′n(x)− φn(x) + ρ′n(x)(φ′n − φn)

1− µ′n(x)
.

Since φn =
∑
x φn(x) and similarly for φ′n, then φ′n(x) − φn(x) → 0 pointwise implies that

φ′n − φn → 0 also. For any µ(x) > 0,

0 ≤ lim
n→∞

φn(x)

Nn(x)

(a)

≤ lim
n→∞

∑
x∈X φn(x)

Nn(x)

= lim
n→∞

∑
x∈X φn(x)

n

n

Nn(x)

(b)
= 0,

where a) follows from φn(x) ≥ 0 and b) is justified by n/Nn(x)→ µ(x)−1 > 0 and the hypothesis
that

∑
x∈X φn(x)/n→ 0. Therefore ρn(x)→ µ(x). Hence

lim
n→∞

ρ′n(x)− ρn(x)

µ′n(x)− µn(x)
= lim
n→∞

n

n+ φn

1− ρ′n(x)

1− µ′n(x)
= 1.

Since ρn(x)→ µ(x), we further deduce from Theorem 2 that

lim
n→∞

N̂n(x)

Nn(x)
= 1.

The condition µ(x) > 0, which was also needed in Proposition 1, is necessary for the ratio to
converge to 1: for example, if Nn(x) grows as O(log n) but φn(x) grows as O(

√
n) (with |X |

finite) then N̂n(x) will grow as the larger
√
n.

C Experimental Methods

C.1 CTS Density Model

Our state space X is the set of all preprocessed Atari 2600 frames.2 Each raw frame is composed of
210×160 7-bit NTSC pixels (Bellemare et al., 2013). We preprocess these frames by first converting
them to grayscale (luminance), then downsampling to 42×42 by averaging over pixel values (Figure
5).

Aside from this preprocessing, our model is very similar to the model used by Bellemare et al.
(2014) and Veness et al. (2015). The CTS density model treats x ∈ X as a factored state, where
each (i, j) pixel corresponds to a factor xi,j . The parents of this factor are its upper-left neighbours,
i.e. pixels (i − 1, j), (i, j − 1), (i − 1, j − 1) and (i + 1, j − 1) (in this order). The probability
of x is then the product of the probability assigned to its factors. Each factor is modelled using a
location-dependent CTS model, which predicts the pixel’s colour value conditional on some, all, or
possibly none, of the pixel’s parents (Figure 6).

2Technically, the ALE is partially observable and a frame is an observation, not a state. In many games,
however, the current frame is sufficiently informative to guide exploration.
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Original Frame (160x210)
Downsampled,

3-bit Greyscale (42x42)

Figure 5: Sample preprocessed image provided to the CTS model (right), along with the original
frame (left). Although details are lost, objects can still be made out.

xi,j

Figure 6: Depiction of the CTS “filter”. Each downsampled pixel is predicted by a location-specific
model which can condition on the pixel’s immediate neighbours (in blue).

C.2 Reward Function and Monte Carlo Return

We added the extrinsic and intrinsic rewards together to produce a combined reward at each step. We
clipped the resulting sum so that it lies within [−1, 1] to ensure stable learning behaviour in DQN.
Intrinsic rewards were computed at the end of each episode using a backward pass through the most
recent episode; the resulting combined reward then replaces the extrinsic reward in the experience
replay buffer. As a result, we did not allow DQN to update from incomplete episodes. We note that
the resulting intrinsic rewards are slightly smaller than they would be if computed immediately after
the transition. However, these particular choices were made for simplicity of implementation and
should not meaningfully affect our experimental results.

Agents trained on Atari 2600 games benefit from eligibility traces and other mechanisms that prop-
agate rewards from multiple steps ahead (Munos et al., 2016; Mnih et al., 2016; Wang et al., 2016).
In our experiments we used a poor man’s approximation to these ideas, namely we mix in 10%
of the Monte Carlo return (computed from the experience replay buffer) together with the regular
Double-DQN target. The target is thus

TARGETMIX = 0.9× TARGETDOUBLE DQN + 0.1× TARGETMONTE CARLO.

The Monte Carlo return is the discounted sum of combined rewards along the episode, and is com-
puted during the same backward pass used to compute the intrinsic rewards. This implementation
has the advantage of computational and implementational simplicity, but we believe more elaborate
schemes should improve our agents’ performance.

C.3 A Taxonomy of Exploration

We provide in Table 1 a rough taxonomy of the Atari 2600 games available through the ALE in
terms of the difficulty of exploration.

We first divided the games into two groups: those for which local exploration (e.g. ε-greedy) is
sufficient to achieve a high scoring policy (easy), and those for which it is not (hard). For exam-
ple, SPACE INVADERS versus PITFALL!. We further divided the easy group based on whether an
ε-greedy scheme finds a score exploit, that is maximizes the score without achieving the game’s
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Easy Exploration Hard Exploration
Human-Optimal Score Exploit Dense Reward Sparse Reward

ASSAULT ASTERIX BEAM RIDER ALIEN FREEWAY
ASTEROIDS ATLANTIS KANGAROO AMIDAR GRAVITAR

BATTLE ZONE BERZERK KRULL BANK HEIST MONTEZUMA’S REVENGE
BOWLING BOXING KUNG-FU MASTER FROSTBITE PITFALL!

BREAKOUT CENTIPEDE ROAD RUNNER H.E.R.O. PRIVATE EYE
CHOPPER CMD CRAZY CLIMBER SEAQUEST MS. PAC-MAN SOLARIS

DEFENDER DEMON ATTACK UP N DOWN Q*BERT VENTURE
DOUBLE DUNK ENDURO TUTANKHAM SURROUND
FISHING DERBY GOPHER WIZARD OF WOR

ICE HOCKEY JAMES BOND ZAXXON
NAME THIS GAME PHOENIX

PONG RIVER RAID
ROBOTANK SKIING

SPACE INVADERS STARGUNNER

Table 1: A rough taxonomy of Atari 2600 games according to their exploration difficulty.

0 2

3 4 5 6 7

8 9 10 11 12 13 14

16 17 18 19 20 21 22 23

Figure 7: Layout of levels in MONTEZUMA’S REVENGE, with rooms numbered from 0 to 23. The
agent begins in room 1 and completes the level upon reaching room 15 (depicted).

stated objective. For example, KUNG-FU MASTER versus BOXING. While this distinction is not
directly used here, score exploits lead to behaviours which are optimal from an ALE perspective but
uninteresting to humans. We divide the games in the hard category into dense reward games (MS.
PAC-MAN) and sparse reward games (MONTEZUMA’S REVENGE).

C.4 Exploration in MONTEZUMA’S REVENGE

MONTEZUMA’S REVENGE is divided into three levels, each composed of 24 rooms arranged in a
pyramidal shape (Figure 7). As discussed above, each room poses a number of challenges: to escape
the very first room, the agent must climb ladders, dodge a creature, pick up a key, then backtrack to
open one of two doors. The number of rooms reached by an agent is therefore a good measure of its
ability. By accessing the game RAM, we recorded the location of the agent at each step during the
course of training.3 We computed the visit count to each room, averaged over epochs each lasting
one million frames. From this information we constructed a map of the agent’s “known world”, that
is, all rooms visited at least once. The agent’s current room number ranges from 0 to 23 (Figure 7)
and is stored at RAM location 0x83. Figure 8 shows the set of rooms explored by our DQN agents
at different points during training.

Figure 8 paints a clear picture: after 50 million frames, the agent using exploration bonuses has seen
a total of 15 rooms, while the no-bonus agent has seen two. At that point in time, our agent achieves
an average score of 2461; by 100 million frames, this figure stands at 3439, higher than anything
previously reported. We believe the success of our method in this game is a strong indicator of the
usefulness of pseudo-counts for exploration.

We remark that without mixing in the Monte Carlo return, our bonus-based agent still explores
significantly more than the no-bonus agent. However, the deep network seems unable to main-
tain a sufficiently good approximation to the value function, and performance quickly deteriorates.
Comparable results using the A3C method provide another example of the practical importance of
eligibility traces and return-based methods in reinforcement learning.

3We emphasize that the game RAM is not made available to the agent, and is solely used here in our
behavioural analysis.
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No bonus

With bonus

No bonus

With bonus

No bonus

With bonus

No bonus

With bonus

5 MILLION TRAINING FRAMES 10 MILLION TRAINING FRAMES

20 MILLION TRAINING FRAMES 50 MILLION TRAINING FRAMES

Figure 8: “Known world” of a DQN agent trained over time, with (bottom) and without (top)
count-based exploration bonuses, in MONTEZUMA’S REVENGE.

C.5 Improving Exploration for Actor-Critic Methods

Our implementation of A3C was along the lines mentioned in Mnih et al. (2016) and uses 16 threads.
Each thread corresponds to an actor learner and maintains a copy of the density model. All the
threads are synchronized with the master thread at regular intervals of 250,000 steps. We followed
the same training procedure as that reported in the A3C paper with the following additional steps:
We update our density model with the states generated by following the policy. During the policy
gradient step, we compute the intrinsic rewards by querying the density model and add it to the
extrinsic rewards before clipping them in the range [−1, 1] as was done in the A3C paper. This
resulted in minimal overhead in computation costs and the memory footprint was manageable (<
32 GB) for most of the Atari games. Our training times were almost the same as the ones reported
in the A3C paper. We picked β = 0.01 after performing a short parameter sweep over the training
games. The choice of training games is the same as mentioned in the A3C paper.

The games on which DQN achieves a score of 150% or less of the random score are: ASTEROIDS,
DOUBLE DUNK, GRAVITAR, ICE HOCKEY, MONTEZUMA’S REVENGE, PITFALL!, SKIING, SUR-
ROUND, TENNIS, TIME PILOT.

The games on which A3C achieves a score of 150% or less of the random score are: BATTLE ZONE,
BOWLING, ENDURO, FREEWAY, GRAVITAR, KANGAROO, PITFALL!, ROBOTANK, SKIING, SO-
LARIS, SURROUND, TENNIS, TIME PILOT, VENTURE.

The games on which A3C+ achieves a score of 150% or less of the random score are: DOUBLE
DUNK, GRAVITAR, ICE HOCKEY, PITFALL!, SKIING, SOLARIS, SURROUND, TENNIS, TIME PI-
LOT, VENTURE.

Our experiments involved the stochastic version of the Arcade Learning Environment (ALE) with-
out a terminal signal for life loss, which is now the default ALE setting. Briefly, the stochasticity
is achieved by accepting the agent action at each frame with probability 1− p and using the agents
previous action during rejection. We used the ALE’s default value of p = 0.25 as has been previ-
ously used in Bellemare et al. (2016). For comparison, Table 2 also reports the deterministic + life
loss setting also used in the literature.

Anecdotally, we found that using the life loss signal, while helpful in achieving high scores in some
games, is detrimental in MONTEZUMA’S REVENGE. Recall that the life loss signal was used by
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Mnih et al. (2015) to treat each of the agent’ lives as a separate episode. For comparison, after 200
million frames A3C+ achieves the following average scores: 1) Stochastic + Life Loss: 142.50; 2)
Deterministic + Life Loss: 273.70 3) Stochastic without Life Loss: 1127.05 4) Deterministic without
Life Loss: 273.70. The maximum score achieved by 3) is 3600, in comparison to the maximum of
500 achieved by 1) and 3). This large discrepancy is not unsurprising when one considers that losing
a life in MONTEZUMA’S REVENGE, and in fact in most games, is very different from restarting a
new episode.

C.6 Comparing Exploration Bonuses

In this section we compare the effect of using different exploration bonuses derived from our density
model. We consider the following variants:

• no exploration bonus,

• N̂n(x)−1/2, as per MBIE-EB (Strehl and Littman, 2008);

• N̂n(x)−1, as per BEB (Kolter and Ng, 2009); and
• PGn(x), related to compression progress (Schmidhuber, 2008).

The exact form of these bonuses is analogous to (4). We compare these variants after 10, 50, 100, and
200 million frames of training, again in the A3C setup. To compare scores across 60 games, we use
inter-algorithm score distributions (Bellemare et al., 2013). Inter-algorithm scores are normalized
so that 0 corresponds to the worst score on a game, and 1, to the best. If g ∈ {1, . . . ,m} is a game
and zg,a the inter-algorithm score on g for algorithm a, then the score distribution function is

f(x) :=
|{g : zg,a ≥ x}|

m
.

The score distribution effectively depicts a kind of cumulative distribution, with a higher overall
curve implying better scores across the gamut of Atari 2600 games. A higher curve at x = 1
implies top performance on more games; a higher curve at x = 0 indicates the algorithm does not
perform poorly on many games. The scale parameter β was optimized to β = 0.01 for each variant
separately.

Figure 10 shows that, while prediction gain initially achieves strong performance, by 50 million
frames all three algorithms perform equally well. By 200 million frames, the N̂−1/2 exploration
bonus outperforms both prediction gain and no bonus. The prediction gain achieves a decent, but
not top-performing score on all games. This matches our earlier argument that using prediction
gain results in too little exploration. We hypothesize that the poor performance of the N̂−1 bonus
stems from too abrupt a decay from a large to small intrinsic reward, although more experiments are
needed. As a whole, these results show how using PG offers an advantage over the baseline A3C
algorithm, which is furthered by using our count-based exploration bonus.
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Figure 9: Average A3C+ score (solid line) over 200 million training frames, for all Atari 2600
games, normalized relative to the A3C baseline. Dotted lines denote min/max over seeds, inter-
quartile range is shaded, and the median is dashed.
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Stochastic ALE Deterministic ALE
A3C A3C+ DQN A3C A3C+ DQN

ALIEN 1968.40 1848.33 1802.08 1658.25 1945.66 1418.47
AMIDAR 1065.24 964.77 781.76 1034.15 861.14 654.40

ASSAULT 2660.55 2607.28 1246.83 2881.69 2584.40 1707.87
ASTERIX 7212.45 7262.77 3256.07 9546.96 7922.70 4062.55

ASTEROIDS 2680.72 2257.92 525.09 3946.22 2406.57 735.05
ATLANTIS 1752259.74 1733528.71 77670.03 1634837.98 1801392.35 281448.80

BANK HEIST 1071.89 991.96 419.50 1301.51 1182.89 315.93
BATTLE ZONE 3142.95 7428.99 16757.88 3393.84 7969.06 17927.46
BEAM RIDER 6129.51 5992.08 4653.24 7004.58 6723.89 7949.08

BERZERK 1203.09 1720.56 416.03 1233.47 1863.60 471.76
BOWLING 32.91 68.72 29.07 35.00 75.97 30.34

BOXING 4.48 13.82 66.13 3.07 15.75 80.17
BREAKOUT 322.04 323.21 85.82 432.42 473.93 259.40
CENTIPEDE 4488.43 5338.24 4698.76 5184.76 5442.94 1184.46

CHOPPER COMMAND 4377.91 5388.22 1927.50 3324.24 5088.17 1569.84
CRAZY CLIMBER 108896.28 104083.51 86126.17 111493.76 112885.03 102736.12

DEFENDER 42147.48 36377.60 4593.79 39388.08 38976.66 6225.82
DEMON ATTACK 26803.86 19589.95 4831.12 39293.17 30930.33 6183.58
DOUBLE DUNK 0.53 -8.88 -11.57 0.19 -7.84 -13.99

ENDURO 0.00 749.11 348.30 0.00 694.83 441.24
FISHING DERBY 30.42 29.46 -27.83 32.00 31.11 -8.68

FREEWAY 0.00 27.33 30.59 0.00 30.48 30.12
FROSTBITE 290.02 506.61 707.41 283.99 325.42 506.10

GOPHER 5724.01 5948.40 3946.13 6872.60 6611.28 4946.39
GRAVITAR 204.65 246.02 43.04 201.29 238.68 219.39
H.E.R.O. 32612.96 15077.42 12140.76 34880.51 15210.62 11419.16

ICE HOCKEY -5.22 -7.05 -9.78 -5.13 -6.45 -10.34
JAMES BOND 424.11 1024.16 511.76 422.42 1001.19 465.76

KANGAROO 47.19 5475.73 4170.09 46.63 4883.53 5972.64
KRULL 7263.37 7587.58 5775.23 7603.84 8605.27 6140.24

KUNG-FU MASTER 26878.72 26593.67 15125.08 29369.90 28615.43 11187.13
MONTEZUMA’S REVENGE 0.06 142.50 0.02 0.17 273.70 0.00

MS. PAC-MAN 2163.43 2380.58 2480.39 2327.80 2401.04 2391.89
NAME THIS GAME 6202.67 6427.51 3631.90 6087.31 7021.30 6565.41

PHOENIX 12169.75 20300.72 3015.64 13893.06 23818.47 7835.20
PITFALL -8.83 -155.97 -84.40 -6.98 -259.09 -86.85
POOYAN 3706.93 3943.37 2817.36 4198.61 4305.57 2992.56

PONG 18.21 17.33 15.10 20.84 20.75 19.17
PRIVATE EYE 94.87 100.00 69.53 97.36 99.32 -12.86

Q*BERT 15007.55 15804.72 5259.18 19175.72 19257.55 7094.91
RIVER RAID 10559.82 10331.56 8934.68 11902.24 10712.54 2365.18

ROAD RUNNER 36933.62 49029.74 31613.83 41059.12 50645.74 24933.39
ROBOTANK 2.13 6.68 50.80 2.22 7.68 40.53
SEAQUEST 1680.84 2274.06 1180.70 1697.19 2015.55 3035.32

SKIING -23669.98 -20066.65 -26402.39 -20958.97 -22177.50 -27972.63
SOLARIS 2156.96 2175.70 805.66 2102.13 2270.15 1752.72

SPACE INVADERS 1653.59 1466.01 1428.94 1741.27 1531.64 1101.43
STAR GUNNER 55221.64 52466.84 47557.16 59218.08 55233.43 40171.44

SURROUND -7.79 -6.99 -8.77 -7.10 -7.21 -8.19
TENNIS -12.44 -20.49 -12.98 -16.18 -23.06 -8.00

TIME PILOT 7417.08 3816.38 2808.92 9000.91 4103.00 4067.51
TUTANKHAM 250.03 132.67 70.84 273.66 112.14 75.21

UP AND DOWN 34362.80 8705.64 4139.20 44883.40 23106.24 5208.67
VENTURE 0.00 0.00 54.86 0.00 0.00 0.00

VIDEO PINBALL 53488.73 35515.91 55326.08 68287.63 97372.80 52995.08
WIZARD OF WOR 4402.10 3657.65 1231.23 4347.76 3355.09 378.70
YAR’S REVENGE 19039.24 12317.49 14236.94 20006.02 13398.73 15042.75

ZAXXON 121.35 7956.05 2333.52 152.11 7451.25 2481.40
Times Best 26 24 8 26 25 9

Table 2: Average score after 200 million training frames for A3C and A3C+ (with N̂−1/2n bonus),
with a DQN baseline for comparison.
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Figure 10: Inter-algorithm score distribution for exploration bonus variants. For all methods the
point f(0) = 1 is omitted for clarity. See text for details.
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