
Increasing the Action Gap:
New Operators for Reinforcement Learning

Marc G. Bellemare and Georg Ostrovski and Arthur Guez
Philip S. Thomas∗ and Rémi Munos

Google DeepMind
{bellemare,ostrovski,aguez,munos}@google.com; philipt@cs.cmu.edu

Abstract
This paper introduces new optimality-preserving oper-
ators on Q-functions. We first describe an operator for
tabular representations, the consistent Bellman opera-
tor, which incorporates a notion of local policy con-
sistency. We show that this local consistency leads to
an increase in the action gap at each state; increasing
this gap, we argue, mitigates the undesirable effects
of approximation and estimation errors on the induced
greedy policies. This operator can also be applied to
discretized continuous space and time problems, and
we provide empirical results evidencing superior per-
formance in this context. Extending the idea of a locally
consistent operator, we then derive sufficient conditions
for an operator to preserve optimality, leading to a fam-
ily of operators which includes our consistent Bellman
operator. As corollaries we provide a proof of optimal-
ity for Baird’s advantage learning algorithm and derive
other gap-increasing operators with interesting proper-
ties. We conclude with an empirical study on 60 Atari
2600 games illustrating the strong potential of these new
operators.

Value-based reinforcement learning is an attractive solu-
tion to planning problems in environments with unknown,
unstructured dynamics. In its canonical form, value-based
reinforcement learning produces successive refinements of
an initial value function through repeated application of a
convergent operator. In particular, value iteration (Bellman
1957) directly computes the value function through the iter-
ated evaluation of Bellman’s equation, either exactly or from
samples (e.g. Q-Learning, Watkins 1989).

In its simplest form, value iteration begins with an initial
value function V0 and successively computes Vk+1 := T Vk,
where T is the Bellman operator. When the environment dy-
namics are unknown, Vk is typically replaced by Qk, the
state-action value function, and T is approximated by an
empirical Bellman operator. The fixed point of the Bellman
operator, Q∗, is the optimal state-action value function or
optimal Q-function, from which an optimal policy π∗ can be
recovered.

In this paper we argue that the optimal Q-function is in-
consistent, in the sense that for any action a which is subop-
∗Now at Carnegie Mellon University.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

timal in state x, Bellman’s equation for Q∗(x, a) describes
the value of a nonstationary policy: upon returning to x, this
policy selects π∗(x) rather than a. While preserving global
consistency appears impractical, we propose a simple mod-
ification to the Bellman operator which provides us a with
a first-order solution to the inconsistency problem. Accord-
ingly, we call our new operator the consistent Bellman oper-
ator.

We show that the consistent Bellman operator gener-
ally devalues suboptimal actions but preserves the set of
optimal policies. As a result, the action gap – the value
difference between optimal and second best actions – in-
creases. Increasing the action gap is advantageous in the
presence of approximation or estimation error (Farahmand
2011), and may be crucial for systems operating at a fine
time scale such as video games (Togelius et al. 2009;
Bellemare et al. 2013), real-time markets (Jiang and Pow-
ell 2015), and robotic platforms (Riedmiller et al. 2009;
Hoburg and Tedrake 2009; Deisenroth and Rasmussen 2011;
Sutton et al. 2011). In fact, the idea of devaluating subop-
timal actions underpins Baird’s advantage learning (Baird
1999), designed for continuous time control, and occurs nat-
urally when considering the discretized solution of contin-
uous time and space MDPs (e.g. Munos and Moore 1998;
2002), whose limit is the Hamilton-Jacobi-Bellman equation
(Kushner and Dupuis 2001). Our empirical results on the bi-
cycle domain (Randlov and Alstrom 1998) show a marked
increase in performance from using the consistent Bellman
operator.

In the second half of this paper we derive novel sufficient
conditions for an operator to preserve optimality. The rela-
tive weakness of these new conditions reveal that it is possi-
ble to deviate significantly from the Bellman operator with-
out sacrificing optimality: an optimality-preserving operator
needs not be contractive, nor even guarantee convergence of
the Q-values for suboptimal actions. While numerous alter-
natives to the Bellman operator have been put forward (e.g.
recently Azar et al. 2011; Bertsekas and Yu 2012), we be-
lieve our work to be the first to propose such a major depar-
ture from the canonical fixed-point condition required from
an optimality-preserving operator. As proof of the richness
of this new operator family we describe a few practical in-
stantiations with unique properties.

We use our operators to obtain state-of-the-art empirical

results on the Arcade Learning Environment (Bellemare et
al. 2013). We consider the Deep Q-Network (DQN) archi-
tecture of Mnih et al. (2015), replacing only its learning rule
with one of our operators. Remarkably, this one-line change
produces agents that significantly outperform the original
DQN. Our work, we believe, demonstrates the potential im-
pact of rethinking the core components of value-based rein-
forcement learning.

Background
We consider a Markov decision process M :=
(X ,A, P,R, γ) where X is the state space, A is the
finite action space, P is the transition probability kernel,
R is the reward function mapping state-action pairs to
a bounded subset of R, and γ ∈ [0, 1) is the discount
factor. We denote by Q := QX ,A and V := VX the space
of bounded real-valued functions over X × A and X ,
respectively. For Q ∈ Q we write V (x) := maxaQ(x, a),
and follow this convention for related quantities (Ṽ for Q̃,
V ′ for Q′, etc.) whenever convenient and unambiguous. In
the context of a specific (x, a) ∈ X × A we further write
EP := Ex′∼P (· | x,a) to mean the expectation with respect
to P (· |x, a), with the convention that x′ always denotes the
next state random variable.

A deterministic policy π : X → A induces a Q-function
Qπ ∈ Q whose Bellman equation is

Qπ(x, a) := R(x, a) + γEP Q
π(x′, π(x′)).

The state-conditional expected return V π(x) :=
Qπ(x, π(x)) is the expected discounted total reward
received from starting in x and following π.

The Bellman operator T : Q → Q is defined pointwise
as

T Q(x, a) := R(x, a) + γEP max
b∈A

Q(x′, b). (1)

T is a contraction mapping in supremum norm (Bertsekas
and Tsitsiklis 1996) whose unique fixed point is the optimal
Q-function

Q∗(x, a) = R(x, a) + γEP max
b∈A

Q∗(x′, b),

which induces the optimal policy π∗:

π∗(x) := arg max
a∈A

Q∗(x, a) ∀x ∈ X .

A Q-function Q ∈ Q induces a greedy policy π(x) :=
arg maxaQ(x, a), with the property that Qπ = Q if and
only if Q = Q∗. For x ∈ X we call π(x) the greedy ac-
tion with respect to Q and a 6= π(x) a nongreedy action;
for π∗ these are the usual optimal and suboptimal actions,
respectively.

We emphasize that while we focus on the Bellman op-
erator, our results easily extend to its variations such as
SARSA (Rummery and Niranjan 1994), policy evaluation
(Sutton 1988), and fitted Q-iteration (Ernst, Geurts, and We-
henkel 2005). In particular, our new operators all have a
sample-based form, i.e., an analogue to the Q-Learning rule
of Watkins (1989).

a1

a2

p = 1, r = 0

r = 1

“Bad State”
x1 x2

“cake”

“no cake”

V = � 2

�
(1 + ✏)

p = 1/2,

Figure 1: A two-state MDP illustrating the non-stationary
aspect of the Bellman operator. Here, p and r indicate tran-
sition probabilities and rewards, respectively. In state x1 the
agent may either eat cake to receive a reward of 1 and transi-
tion to x2 with probability 1

2 , or abstain for no reward. State
x2 is a low-value absorbing state with ε > 0.

The Consistent Bellman Operator
It is well known (and implicit in our notation) that the op-
timal policy π∗ for M is stationary (i.e., time-independent)
and deterministic. In looking for π∗, we may therefore re-
strict our search to the space Π of stationary deterministic
policies. Interestingly, as we now show the Bellman opera-
tor on Q is not, in a sense, restricted to Π.

To begin, consider the two-state MDP depicted in Figure
1. This MDP abstracts a Faustian situation in which an agent
repeatedly chooses between an immediately rewarding but
ultimately harmful option (a1), or an unrewarding alterna-
tive (a2). For concreteness, we imagine the agent as faced
with an endless supply of delicious cake (with γ > 0) and
call these the “cake” and “no cake” actions.

Eating cake can cause a transition to x2, the “bad state”,
whose value is independent of the agent’s policy:

V π(x2) := −2(1 + ε)
1

γ
∀π ∈ Π.

In state x1, however, the Q-values depend on the agent’s fu-
ture behaviour. For a policy π ∈ Π, the value of a1 is

Qπ(x1, a1) = 1 + γ

[
1

2
V π(x1) +

1

2
V π(x2)

]
(2)

= 1 +
γ

2
V π(x1)− (1 + ε) =

γ

2
V π(x1)− ε.

By contrast, the value of a2 is

Qπ(x1, a2) = 0 + γV π(x1),

which is greater thanQπ(x1, a1) for all π. It follows that not
eating cake is optimal, and thus V ∗(x1) = Q∗(x1, a2) = 0.
Furthermore, (2) tells us that the value difference between
optimal and second best action, or action gap, is

Q∗(x1, a2)−Q∗(x1, a1) = ε.

Notice that Q∗(x1, a1) = −ε does not describe the value of
any stationary policy. That is, the policy π̃ with π̃(x1) = a1

has value

V π̃(x1) = −ε+
γ

2
V π̃(x1) =

−ε
1− γ/2 , (3)

and in particular this value is lower than Q∗(x1, a1). In-
stead,Q∗(x1, a1) describes the value of a nonstationary pol-
icy which eats cake once, but then subsequently abstains.

So far we have considered the Q-functions of given sta-
tionary policies π, and argued that these are nonstation-
ary. We now make a similar statement about the Bellman
operator: for any Q ∈ Q, the nongreedy components of
Q′ := T Q do not generally describe the expected return
of stationary policies. Hence the Bellman operator is not re-
stricted to Π.

When the MDP of interest can be solved exactly, this non-
stationarity is a non-issue since only the Q-values for opti-
mal actions matter. In the presence of estimation or approxi-
mation error, however, small perturbations in the Q-function
may result in erroneously identifying the optimal action. Our
example illustrates this effect: an estimate Q̂ of Q∗ which is
off by ε can induce a pessimal greedy policy (i.e. π̃).

To address this issue, we may be tempted to define a new
Q-function which explicitly incorporates stationarity:

QπSTAT(x, a) := R(x, a) + γEP max
b∈A

Qπ
′

STAT(x′, b), (4)

π′(y) :=

{
a if y = x,
π(y) otherwise.

Under this new definition, the action gap of the optimal pol-
icy is ε

1−γ/2 > Q∗(x1, a2)−Q∗(x1, a1). Unfortunately, (4)
does not visibly yield a useful operator on Q. As a practi-
cal approximation we now propose the consistent Bellman
operator, which preserves a local form of stationarity:

TCQ(x, a) := R(x, a) + (5)

γEP

[
I[x 6=x′] max

b∈A
Q(x′, b) + I[x=x′]Q(x, a)

]
.

Effectively, our operator redefines the meaning of Q-values:
if from state x ∈ X an action a is taken and the next state
is x′ = x then a is again taken. In our example, this new
Q-value describes the expected return for repeatedly eating
cake until a transition to the unpleasant state x2.

Since the optimal policy π∗ is stationary, we may intuit
that iterated application of this new operator also yields π∗.
In fact, below we show that the consistent Bellman operator
is both optimality-preserving and, in the presence of direct
loops in the corresponding transition graph, gap-increasing:
Definition 1. An operator T ′ is optimality-preserving if, for
any Q0 ∈ Q and x ∈ X , letting Qk+1 := T ′Qk,

Ṽ (x) := lim
k→∞

max
a∈A

Qk(x, a)

exists, is unique, Ṽ (x) = V ∗(x), and for all a ∈ A,

Q∗(x, a) < V ∗(x, a) =⇒ lim sup
k→∞

Qk(x, a) < V ∗(x).

Thus under an optimality-preserving operator at least one
optimal action remains optimal, and suboptimal actions re-
main suboptimal.
Definition 2. Let M be an MDP. An operator T ′ for M is
gap-increasing if for all Q0 ∈ Q, x ∈ X , a ∈ A, letting
Qk+1 := T ′Qk and Vk(x) := maxbQk(x, b),

lim inf
k→∞

[
Vk(x)−Qk(x, a)

]
≥ V ∗(x)−Q∗(x, a). (6)

We are particularly interested in operators which are
strictly gap-increasing, in the sense that (6) is a strict in-
equality for at least one (x, a) pair.

Our two-state MDP illustrates the first benefit of increas-
ing the action gap: a greater robustness to estimation error.
Indeed, under our new operator the optimal Q-value of eat-
ing cake becomes

Q̃(x1, a1) =
γ

2
Q̃(x1, a1)− ε =

−ε
1− γ/2 ,

which is, again, smaller thanQ∗(x1, a1) whenever γ > 0. In
the presence of approximation error in the Q-values, we may
thus expect Q̃(x1, a1) < Q̃(x1, a2) to occur more frequently
than the converse.

Aggregation Methods
At first glance, the use of an indicator function in (5) may
seem limiting: P (x |x, a) may be zero or close to zero
everywhere, or the state may be described by features which
preclude a meaningful identity test I[x=x′]. There is, how-
ever, one important family of value functions which have
“tabular-like” properties: aggregation schemes (Bertsekas
2011). As we now show, the consistent Bellman operator is
well-defined for all aggregation schemes.

An aggregation scheme for M is a tuple (Z, A,D) where
Z is a set of aggregate states, A is a mapping from X to
distributions over Z , and D is a mapping from Z to distri-
butions over X . For z ∈ Z, x′ ∈ X let ED := Ex∼D(· | z)
and EA := Ez′∼A(· | x′), where as before we assign specific
roles to x, x′ ∈ X and z, z′ ∈ Z . We define the aggregation
Bellman operator TA : QZ,A → QZ,A as

TAQ(z, a) := ED

[
R(x, a) + γEP EA max

b∈A
Q(z′, b)

]
. (7)

When Z is a finite subset of X and D corresponds to the
identity transition function, i.e. D(x | z) = I[x=z], we re-
cover the class of averagers (Gordon 1995; e.g., multilinear
interpolation, illustrated in Figure 2) and kernel-based meth-
ods (Ormoneit and Sen 2002). If A also corresponds to the
identity and X is finite, TA reduces to the Bellman operator
(1) and we recover the familiar tabular representation (Sut-
ton and Barto 1998).

Generalizing (5), we define the consistent Bellman oper-
ator TC over QZ,A:

TCQ(z, a) := ED

[
R(x, a) + (8)

γEP EA

[
I[z 6=z′] max

b∈A
Q(z′, b) + I[z=z′]Q(z, a)

]]
.

Intuitively (see, e.g., Bertsekas 2011), the D and A map-
pings induce a new MDP, M ′ := (Z,A, P ′, R′, γ) with

R′(z, a) := ED R(x, a),

P ′(z′′ | z, a) := EDEP EA I[z′′=z′].
In this light, we see that our original definition of TC and
(8) only differ in their interpretation of the transition kernel.
Thus the consistent Bellman operator remains relevant in
cases where P is a deterministic transition kernel, for exam-
ple when applying multilinear or barycentric interpolation to
continuous space MDPs (e.g. Munos and Moore 1998).

{
{

↵

�

Figure 2: Multilinear interpolation in two dimensions. The
value at x is approximated as V (x) := Ez′∼A(· | x) V (z′).
Here A(z1 |x) = (1−α)(1−β), A(z2 |x) = α(1−β), etc.

Q-Value Interpolation
Aggregation schemes as defined above do not immediately
yield a Q-function over X . Indeed, the Q-value at an arbi-
trary x ∈ X is defined (in the ordinary Bellman operator
sense) as

Q(x, a) := R(x, a) + γEP EA max
b∈A

Q(z′, b), (9)

which may only be computed from a full or partial model
of the MDP, or by inverting D. It is often the case that nei-
ther is feasible. One solution is instead to perform Q-value
interpolation:

Q(x, a) := Ez′∼A(· | x)Q(z′, a),

which is reasonable when A(· |x) are interpolation coeffi-
cients1. This gives the related Bellman operator

TQVIQ(z, a) := ED

[
R(x, a) + γEP max

b∈A
Q(x′, b)

]
,

with TQVIQ(z, a) ≤ T Q(z, a) by convexity of the max op-
eration. From here one may be tempted to define the corre-
sponding consistent operator as

T ′QVIQ(z, a) := ED

[
R(x, a) +

γEP max
b∈A

[
Q(x′, b)−A(z |x′)

(
Q(z, b)−Q(z, a)

)]]
.

While T ′QVI remains a contraction, T ′QVIQ(z, a) ≤
TQVIQ(z, a) is not guaranteed, and it is easy to show that
T ′QVI is not optimality-preserving. Instead we define the con-
sistent Q-value interpolation Bellman operator as

TCQVIQ := min
{
TQVIQ, T ′QVIQ

}
. (10)

As a corollary to Theorem 1 below we will prove that TCQVI

is also optimality-preserving and gap-increasing.

1One then typically, but not always, takes D to be the identity.

Experiments on the Bicycle Domain

We now study the behaviour of our new operators on the bi-
cycle domain (Randlov and Alstrom 1998). In this domain,
the agent must simultaneously balance a simulated bicycle
and drive it to a goal 1km north of its initial position. Each
time step consists of a hundredth of a second, with a suc-
cessful episode typically lasting 50,000 or more steps. The
driving aspect of this problem is particularly challenging for
value-based methods, since each step contributes little to an
eventual success and the “curse of dimensionality” (Bellman
1957) precludes a fine representation of the state-space. In
this setting our consistent operator provides significantly im-
proved performance and stability.

We approximated value functions using multilinear inter-
polation on a uniform 10×· · ·×10 grid over a 6-dimensional
feature vector ϕ := (ω, ω̇, θ, θ̇, ψ, d). The first four compo-
nents of ϕ describe relevant angles and angular velocities,
while ψ and d are polar coordinates describing the bicycle’s
position relative to the goal. We approximated Q-functions
using Q-value interpolation (TCQVI) over this grid, since in a
typical setting we may not have access to a forward model.

We are interested here in the quality of the value func-
tions produced by different operators. We thus computed our
Q-functions using value iteration, rather than a trajectory-
based method such as Q-Learning. More precisely, at each
iteration we simultaneously apply our operator to all grid
points, with expected next state values estimated from sam-
ples. The interested reader may find full experimental details
and videos in the supplemental.2

While the limiting value functions (Ṽ and V ∗) coincide
on Z ⊆ X (by the optimality-preserving property), they
may differ significantly elsewhere. For x ∈ X we have

Ṽ (x) = maxa Q̃(x, a) = maxaEA(· | x) Q̃(z, a)

6= V ∗(x)

in general. This is especially relevant in the relatively high-
dimensional bicycle domain, where a fine discretization of
the state space is not practical and most of the trajectories
take place “far” from grid points. As an example, consider
ψ, the relative angle to the goal: each grid cell covers an arc
of 2π/10 = π/5, while a single time step typically changes
ψ by less than π/1000.

Figure 3 summarizes our results. Policies derived from
our consistent operator can safely balance the bicycle earlier
on, and also reach the goal earlier than policies derived from
the Bellman operator. Note, in particular, the striking dif-
ference in the trajectories followed by the resulting policies.
The effect is even more pronounced when using a 8×· · ·×8
grid (results provided in the supplemental). Effectively, by
decreasing suboptimal Q-values at grid points we produce
much better policies within the grid cells. This, we argue, is
the second benefit of increasing the action gap: it improves
policies derived from Q-value interpolation.

2Supplemental: http://bit.ly/1ImI0sZ
Videos: https://youtu.be/0pUFjNuom1A

Bellman
operator

Consistent
operator

Fraction of Episodes Ending In Fall

Iterations

Consistent
operator Bellman

operator

Iterations

Fraction of Episodes Ending At Goal

Consistent operatorBellman operator

Start

Goal

Figure 3: Top. Falling and goal-reaching frequency for
greedy policies derived from value iteration. Bottom. Sam-
ple bicycle trajectories after 100, 200, . . . , 1000 iterations.
In this coarse-resolution regime, the Bellman operator ini-
tially yields policies which circle the goal forever, while the
consistent operator quickly yields successful trajectories.

A Family of Convergent Operators
One may ask whether it is possible to extend the consistent
Bellman operator to Q-value approximation schemes which
lack a probabilistic interpretation, such as linear approxi-
mation (Sutton 1996), locally weighted regression (Atkeson
1991), neural networks (Tesauro 1995), or even information-
theoretic methods (Veness et al. 2015). In this section we
answer by the affirmative.

The family of operators which we describe here are ap-
plicable to arbitrary Q-value approximation schemes. While
these operators are in general no longer contractions, they
are gap-increasing, and optimality-preserving when the Q-
function is represented exactly. Theorem 1 is our main re-
sult; one corollary is a convergence proof for Baird’s ad-
vantage learning (Baird 1999). Incidentally, our taking the
minimum in (10) was in fact no accident, but rather a simple
application of this theorem.
Theorem 1. Let T be the Bellman operator defined by (1).
Let T ′ be an operator with the property that there exists an
α ∈ [0, 1) such that for all Q ∈ Q, x ∈ X , a ∈ A, and
letting V (x) := maxbQ(x, b),

1. T ′Q(x, a) ≤ T Q(x, a), and
2. T ′Q(x, a) ≥ T Q(x, a)− α [V (x)−Q(x, a)].
Then T ′ is both optimality-preserving and gap-increasing.

Thus any operator which satisfies the conditions of Theo-
rem 1 will eventually yield an optimal greedy policy, assum-
ing an exact representation of the Q-function. Condition 2,
in particular, states that we may subtract up to (but not in-
cluding) maxbQk(x, b) − Qk(x, a) from Qk(x, a) at each
iteration. This is exactly the action gap at (x, a), but for Qk,

rather than the optimal Q∗. For a particular x, this implies
we may initially devalue the optimal action a∗ := π∗(x) in
favour of the greedy action. But our theorem shows that a∗
cannot be undervalued infinitely often, and in factQk(x, a∗)
must ultimately reach V ∗(x).3 The proof of this perhaps sur-
prising result may be found in the supplemental.

To the best of our knowledge, Theorem 1 is the first
result to show the convergence of iterates of dynamic
programming-like operators without resorting to a contrac-
tion argument. Indeed, the conditions of Theorem 1 are par-
ticularly weak: we do not require T ′ to be a contraction,
nor do we assume the existence of a fixed point (in the Q-
function space Q) of T ′. In fact, the conditions laid out in
Theorem 1 characterize the set of optimality-preserving op-
erators on Q, in the following sense:

Remark 1. There exists a single-state MDP M and an op-
erator T ′ with either

1. T ′Q(x, a) > T Q(x, a) or
2. T ′Q(x, a) < T Q(x, a)− [V (x)−Q(x, a)],

and in both cases there exists a Q0 ∈ Q for which
limk→∞maxa(T ′)kQ0(x, a) 6= V ∗(x).

We note that the above remark does not cover the case
where condition (2) is an equality (i.e., α = 1). We leave
as an open problem the existence of a divergent example for
α = 1.

Corollary 1. The consistent Bellman operator TC (8) and
consistent Q-value interpolation Bellman operator TCQVI

(10) are optimality-preserving.

In fact, it is not hard to show that the consistent Bellman
operator (7) is a contraction, and thus enjoys even stronger
convergence guarantees than those provided by Theorem 1.
Informally, whenever Condition 2 of the theorem is strength-
ened to an inequality, we may also expect our operators to
be strictly gap-increasing; this is in fact the case for both of
our consistent operators.

To conclude this section, we describe a few operators
which satisfy the conditions of Theorem 1, and are thus
optimality-preserving and gap-increasing. Critically, none of
these operators are contractions; one of them, the “lazy” op-
erator, also possesses multiple fixed points.

Baird’s Advantage Learning
The method of advantage learning was proposed by Baird
(1999) as a means of increasing the gap between the optimal
and suboptimal actions in the context of residual algorithms
applied to continuous time problems.4 The corresponding
operator is

T ′Q(x, a) = K−1
[
R(x, a) +

γ∆t EP V (x′) + (K − 1)V (x)
]
,

3When two or more actions are optimal, we are only guaranteed
that one of them will ultimately be correctly valued. The “1-lazy”
operator described below exemplifies this possibility.

4Advantage updating, also by Baird, is a popular but different
idea where an agent maintains both V and A := Q− V .

where ∆t > 0 is a time constant and K := C∆t with C >
0. Taking ∆t = 1 and α := 1−K, we define a new operator
with the same fixed point but a now-familiar form:

TALQ(x, a) := T Q(x, a)− α [V (x)−Q(x, a)] .

Note that, while the two operators are motivated by the same
principle and share the same fixed point, they are not isomor-
phic. We believe our version to be more stable in practice,
as it avoids the multiplication by the K−1 term.
Corollary 2. For α ∈ [0, 1), the advantage learning opera-
tor TAL has a unique limit VAL ∈ V , and VAL = V ∗.

While our consistent Bellman operator originates from
different principles, there is in fact a close relationship be-
tween it and the advantage learning operator. Indeed, we can
rewrite (5) as

TCQ(x, a) = T Q(x, a)− γP (x |x, a) [V (x)−Q(x, a)] ,

which corresponds to advantage learning with a (x, a)-
dependent α parameter.

Persistent Advantage Learning
In domains with a high temporal resolution, it may be ad-
vantageous to encourage greedy policies which infrequently
switch between actions — to encourage a form of persis-
tence. We define an operator which favours repeated actions:

TPALQ(x, a) := max
{
TALQ(x, a), R(x, a) + γEP Q(x′, a)

}
.

Note that the second term of the max can also be written as

T Q(x, a)− γEP [V (x′)−Q(x′, a)] .

As we shall see below, persistent advantage learning
achieves excellent performance on Atari 2600 games.

The Lazy Operator
As a curiosity, consider the following operator with α ∈
[0, 1):

T ′Q(x, a) :=

Q(x, a) if Q(x, a)≤T Q(x, a) and

T Q(x, a) ≤αV (x) +
(1− α)Q(x, a),

T Q(x, a) otherwise.

This α-lazy operator only updatesQ-values when this would
affect the greedy policy. And yet, Theorem 1 applies! Hence
T ′ is optimality-preserving and gap-increasing, even though
it may possess a multitude of fixed points in Q. Of note,
while Theorem 1 does not apply to the 1-lazy operator, the
latter is also optimality-preserving; in this case, however, we
are only guaranteed that one optimal action remain optimal.

Experimental Results on Atari 2600
We evaluated our new operators on the Arcade Learning En-
vironment (ALE; Bellemare et al. 2013), a reinforcement
learning interface to Atari 2600 games. In the ALE, a frame
lasts 1/60th of a second, with actions typically selected ev-
ery four frames. Intuitively, the ALE setting is related to con-
tinuous domains such as the bicycle domain studied above,
in the sense that each individual action has little effect on the
game.

For our evaluation, we trained agents based on the Deep
Q-Network (DQN) architecture of Mnih et al. (2015). DQN
acts according to an ε-greedy policy over a learned neural-
network Q-function. DQN uses an experience replay mech-
anism to train this Q-function, performing gradient descent
on the sample squared error ∆Q(x, a)2, where

∆Q(x, a) := R(x, a) + γV (x′)−Q(x, a),

where (x, a, x′) is a previously observed transition. We de-
fine the corresponding errors for our operators as

∆ALQ(x, a) := ∆Q(x, a)− α[V (x)−Q(x, a)],

∆PALQ(x, a) := max
{

∆ALQ(x, a),

∆Q(x, a)− α[V (x′)−Q(x′, a)]
}
,

where we further parametrized the weight given to Q(x′, a)
in persistent advantage learning (compare with TPAL).

Our first experiment used one of the new ALE standard
versions, which we call here the Stochastic Minimal setting.
This setting includes stochasticity applied to the Atari 2600
controls, no death information, and a per-game minimal ac-
tion set. Specifically, at each frame (not time step) the envi-
ronment accepts the agent’s action with probability 1 − p,
or rejects it with probability p (here, p = 0.25). If an action
is rejected, the previous frame’s action is repeated. In our
setting the agent selects a new action every four frames: the
stochastic controls therefore approximate a form of reaction
delay. As evidenced by a lower DQN performance, Stochas-
tic Minimal is more challenging than previous settings.

We trained each agent for 100 million frames using ei-
ther regular Bellman updates, advantage learning (A.L.), or
persistent advantage learning (P.A.L.). We optimized the α
parameters over 5 training games and tested our algorithms
on 55 more games using 10 independent trials each.

For each game, we performed a paired t-test (99% C.I.)
on the post-training evaluation scores obtained by our algo-
rithms and DQN. A.L. and P.A.L. are statistically better than
DQN on 37 and 35 out of 60 games, respectively; both per-
form worse on one (ATLANTIS, JAMES BOND). P.A.L. often
achieves higher scores than A.L., and is statistically better
on 16 games and worse on 6. These results are especially
remarkable given that the only difference between DQN and
our operators is a simple modification to the update rule.

For comparison, we also trained agents using the Orig-
inal DQN setting (Mnih et al. 2015), in particular using a
longer 200 million frames of training. Figure 4 depicts learn-
ing curves for two games, ASTERIX and SPACE INVADERS.
These curves are representative of our results, rather than ex-
ceptional: on most games, advantage learning outperforms
Bellman updates, and persistent advantage learning further
improves on this result. Across games, the median score im-
provement over DQN is 8.4% for A.L. and 9.1% for P.A.L.,
while the average score improvement is respectively 27.0%
and 32.5%. Full experimental details are provided in the
supplemental.

The learning curve for ASTERIX illustrates the poor per-
formance of DQN on certain games. Recently, van Hasselt,
Guez, and Silver (2016) argued that this poor performance

Advantage learning

DQN

Persistent A.L.

Training Frames (Millions)

Av
er

ag
e

Sc
or

e
ASTERIX

Advantage learning

DQN

Persistent A.L.

Av
er

ag
e

Sc
or

e

Training Frames (Millions)

SPACE INVADERS

Figure 4: Learning curves for two Atari 2600 games in the
Original DQN setting.

Advantage
learning

DQN

Persistent A.L.

Episode Steps

Ac
tio

n
G

ap

Advantage
learningDQN

Persistent A.L.

Episode Steps

Es
tim

at
ed

 S
ta

te
 V

al
ue

Figure 5: Action gaps (left) and value functions (right) for
a single episode of SPACE INVADERS (Original DQN set-
ting). Our operators yield markedly increased action gaps
and lower values.

stems from the instability of the Q-functions learned from
Bellman updates, and provided conclusive empirical evi-
dence to this effect. In the spirit of their work, we compared
our learned Q-functions on a single trajectory generated by a
trained DQN agent playing SPACE INVADERS in the Origi-
nal DQN setting. For each Q-function and each state x along
the trajectory, we computed V (x) as well as the action gap
at x.

The value functions and action gaps resulting from this
experiment5 are depicted in Figure 5. As expected, the ac-
tion gaps are significantly greater for both of our operators,
in comparison to the action gaps produced by DQN. Fur-
thermore, the value estimates are themselves lower, and cor-
respond to more realistic estimates of the true value func-
tion. In their experiments, van Hasselt et al. observed a sim-
ilar effect on the value estimates when replacing the Bell-
man updates with Double Q-Learning updates, one of many
solutions recently proposed to mitigate the negative impact
of statistical bias in value function estimation (van Hasselt
2010; Azar et al. 2011; Lee, Defourny, and Powell 2013).
This bias is positive and is a consequence of the max term in
the Bellman operator. We hypothesize that the lower value
estimates observed in Figure 5 are also a consequence of
bias reduction. Specifically, increased action gaps are con-
sistent with a bias reduction: it is easily shown that the value
estimation bias is strongest when Q-values are close to each
other. If our hypothesis holds true, the third benefit of in-
creasing the action gap is thus to mitigate the statistical bias
of Q-value estimates.

5Videos: https://youtu.be/wDfUnMY3vF8

Open Questions

Weaker Conditions for Optimality. At the core of our re-
sults lies the redefinition of Q-values in order to facilitate
approximate value estimation. Theorem 1 and our empiri-
cal results indicate that there are many practical operators
which do not preserve suboptimal Q-values. Naturally, pre-
serving the optimal value function V is itself unnecessary,
as long as the iterates converge to a Q-function Q̃ for which
arg maxa Q̃(x, a) = π∗(x). It may well be that even weaker
conditions for optimality exist than those required by Theo-
rem 1. At the present, however, our proof technique does not
appear to extend to this case.
Statistical Efficiency of New Operators. Advantage learn-
ing (as given by our redefinition) may be viewed as a gener-
alization of the consistent Bellman operator when P (· |x, a)
is unknown or irrelevant. In this light, we ask: is there a
probabilistic interpretation to advantage learning? We fur-
ther wonder about the statistical efficiency of the consistent
Bellman operator: is it ever less efficient than the usual Bell-
man operator, when considering the probability of misclassi-
fying the optimal action? Both of these answers might shed
some light on the differences in performance observed in our
experiments.
Maximally Efficient Operator. Having revealed the exis-
tence of a broad family of optimality-preserving operators,
we may now wonder which of these operators, if any, should
be preferred to the Bellman operator. Clearly, there are triv-
ial MDPs on which any optimality-preserving operator per-
forms equally well. However, we may ask whether there
is, for a given MDP, a “maximally efficient” optimality-
preserving operator; and whether a learning agent can ben-
efit from simultaneously searching for this operator while
estimating a value function.

Concluding Remarks

We presented in this paper a family of optimality-preserving
operators, of which the consistent Bellman operator is a dis-
tinguished member. At the center of our pursuits lay the de-
sire to increase the action gap; we showed through experi-
ments that this gap plays a central role in the performance of
greedy policies over approximate value functions, and how
significantly increased performance could be obtained by a
simple modification of the Bellman operator. We believe our
work highlights the inadequacy of the classical Q-function
at producing reliable policies in practice, calls into question
the traditional policy-value relationship in value-based rein-
forcement learning, and illustrates how revisiting the con-
cept of value itself can be fruitful.

Acknowledgments

The authors thank Michael Bowling, Csaba Szepesvári,
Craig Boutilier, Dale Schuurmans, Marty Zinkevich, Lihong
Li, Thomas Degris, and Joseph Modayil for useful discus-
sions, as well as the anonymous reviewers for their excellent
feedback.

References
Atkeson, C. G. 1991. Using locally weighted regression for
robot learning. In Proceedings of 1991 IEEE International
Conference on Robotics and Automation, 958–963.
Azar, M. G.; Munos, R.; Gavamzadeh, M.; and Kappen, H. J.
2011. Speedy Q-learning. In Advances in Neural Informa-
tion Processing Systems 24.
Baird, L. C. 1999. Reinforcement learning through gradient
descent. Ph.D. Dissertation, Carnegie Mellon University.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An evaluation
platform for general agents. Journal of Artificial Intelligence
Research 47:253–279.
Bellman, R. E. 1957. Dynamic programming. Princeton,
NJ: Princeton University Press.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Bertsekas, D. P., and Yu, H. 2012. Q-learning and enhanced
policy iteration in discounted dynamic programming. Math-
ematics of Operations Research 37(1):66–94.
Bertsekas, D. P. 2011. Approximate policy iteration: A sur-
vey and some new methods. Journal of Control Theory and
Applications 9(3):310–335.
Deisenroth, M. P., and Rasmussen, C. E. 2011. PILCO:
A model-based and data-efficient approach to policy search.
In Proceedings of the International Conference on Machine
Learning.
Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research 6:503–556.
Farahmand, A. 2011. Action-gap phenomenon in reinforce-
ment learning. In Advances in Neural Information Process-
ing Systems 24.
Gordon, G. 1995. Stable function approximation in dynamic
programming. In Proceedings of the Twelfth International
Conference on Machine Learning.
Hoburg, W., and Tedrake, R. 2009. System identification of
post stall aerodynamics for UAV perching. In Proceedings
of the AIAA Infotech Aerospace Conference.
Jiang, D. R., and Powell, W. B. 2015. Optimal hour ahead
bidding in the real time electricity market with battery stor-
age using approximate dynamic programming. INFORMS
Journal on Computing 27(3):525 – 543.
Kushner, H., and Dupuis, P. G. 2001. Numerical methods
for stochastic control problems in continuous time. Springer.
Lee, D.; Defourny, B.; and Powell, W. B. 2013. Bias-
corrected Q-learning to control max-operator bias in Q-
learning. In Symposium on Adaptive Dynamic Programming
And Reinforcement Learning.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.

Munos, R., and Moore, A. 1998. Barycentric interpolators
for continuous space & time reinforcement learning. In Ad-
vances in Neural Information Processing Systems 11.
Munos, R., and Moore, A. 2002. Variable resolution
discretization in optimal control. Machine learning 49(2-
3):291–323.
Ormoneit, D., and Sen, Ś. 2002. Kernel-based reinforcement
learning. Machine learning 49(2-3):161–178.
Randlov, J., and Alstrom, P. 1998. Learning to drive a bicy-
cle using reinforcement learning and shaping. In Proceed-
ings of the Fifteenth International Conference on Machine
Learning.
Riedmiller, M.; Gabel, T.; Hafner, R.; and Lange, S. 2009.
Reinforcement learning for robot soccer. Autonomous
Robots 27(1):55–73.
Rummery, G. A., and Niranjan, M. 1994. On-line Q-
learning using connectionist systems. Technical report,
Cambridge University Engineering Department.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. MIT Press.
Sutton, R.; Modayil, J.; Delp, M.; Degris, T.; Pilarski, P.;
White, A.; and Precup, D. 2011. Horde: A scalable real-time
architecture for learning knowledge from unsupervised sen-
sorimotor interaction. In Proceedings of the Tenth Interna-
tional Conference on Autonomous Agents and Multiagents
Systems.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3(1):9–44.
Sutton, R. S. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In Ad-
vances in Neural Information Processing Systems 8, 1038–
1044.
Tesauro, G. 1995. Temporal difference learning and TD-
Gammon. Communications of the ACM 38(3).
Togelius, J.; Karakovskiy, S.; Koutnı́k, J.; and Schmidhuber,
J. 2009. Super Mario evolution. In Symposium on Compu-
tational Intelligence and Games.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep re-
inforcement learning with double Q-learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence (to
appear).
van Hasselt, H. 2010. Double Q-learning. In Advances in
Neural Information Processing Systems 23.
Veness, J.; Bellemare, M. G.; Hutter, M.; Chua, A.; and Des-
jardins, G. 2015. Compress and control. In Proceedings of
the AAAI Conference on Artificial Intelligence.
Watkins, C. 1989. Learning From Delayed Rewards. Ph.D.
Dissertation, Cambridge University, Cambridge, England.

