
Increasing The Action Gap:
New Operators For Reinforcement Learning

Supplemental

This appendix is divided into three sections. In Section 1
we present the proofs of our theoretical results. In Section
2 we provide experimental details and additional results for
the Bicycle domain. Finally in Section 3 we provide details
of our experiments on the Arcade Learning Environment,
including results on 60 games.

1 Theoretical Results
Lemma 1. Let Q ∈ Q and πQ be the policy greedy with
respect to Q. Let T ′ be an operator with the properties that,
for all x ∈ X , a ∈ A,

1. T ′Q(x, a) ≤ T Q(x, a), and
2. T ′Q(x, πQ(x)) = T Q(x, πQ(x)).

Consider the sequenceQk+1 := T ′Qk withQ0 ∈ Q, and let
Vk(x) := maxaQk(x, a). Then the sequence (Vk : k ∈ N)
converges, and furthermore, for all x ∈ X ,

lim
k→∞

Vk(x) ≤ V ∗(x).

Proof. By Condition 1, we have that

lim sup
k→∞

Qk(x, a) = lim sup
k→∞

(T ′)kQ0(x, a)

≤ lim sup
k→∞

T kQ0(x, a)

= Q∗(x, a),

since T has a unique fixed point. From this we deduce the
second claim. Now, for a given x ∈ X , let ak := πk(x) :=
arg maxaQk(x, a) and Pk := P (· |x, ak). We have

Vk+1(x) ≥ Qk+1(x, ak) = T ′Qk(x, ak)

= T Qk(x, ak)

= T Qk−1(x, ak) + γEPk
[Vk(x′)− Vk−1(x′)]

≥ T ′Qk−1(x, ak) + γEPk
[Vk(x′)− Vk−1(x′)]

= Vk(x) + γEPk
[Vk(x′)− Vk−1(x′)] ,

where in the second line we used Condition 2 of the lemma,
and in the third the definition of T applied to Qk. Thus we
have

Vk+1(x)− Vk(x) ≥ γEPk
[Vk(x′)− Vk−1(x′)] ,

and by induction

Vk+1(x)− Vk(x) ≥ γkEP1:k
[V1(x′)− V0(x′)] , (1)

where P1:k := PkPk−1 . . . P1 is the k-step transition kernel
at x derived from the nonstationary policy πkπk−1 . . . π1.
Let Ṽ (x) := lim supk→∞ Vk(x). We now show that
lim infk→∞ Vk(x) = Ṽ (x) also. First note that Conditions 1
and 2, together with the boundedness of V0, ensure that V1 is
also bounded and thus ‖V1 − V0‖∞ <∞. By definition, for
any δ > 0 and n ∈ N, ∃k ≥ n such that Vk(x) > Ṽ (x)− δ.
Since P1:k is a nonexpansion in∞-norm, we have

Vk+1(x)− Vk(x) ≥ −γk ‖V1 − V0‖∞
≥ −γn ‖V1 − V0‖∞ =: −ε,

and for all t ∈ N,

Vk+t(x)− Vk(x) ≥ −
t−1∑
i=0

γiε ≥ −ε
1− γ

,

such that

inf
t∈N

Vk+t(x) ≥ Ṽ (x)− δ − ε

1− γ
.

It follows that for any x ∈ X and δ′ > 0, we can choose
an n ∈ N to make ε small enough such that for all k ≥ n,
Vk(x) > Ṽ (x)− δ′. Hence

lim inf
k→∞

Vk(x) = Ṽ (x),

and thus Vk(x) converges.

Lemma 2. Let T ′ be an operator satisfying the conditions
of Lemma 1, and let ‖R‖∞ := maxx,aR(x, a). Then for all
x ∈ X and all k ∈ N,

|Vk(x)| ≤ 1

1− γ

[
2 ‖V0‖∞ + ‖R‖∞

]
. (2)

Proof. Following the derivation of Lemma 1, we have

Vk+1(x)− V0(x) ≥ −
k∑

i=1

γi ‖V1 − V0‖∞

≥ −1

1− γ
‖V1 − V0‖∞ .

By the same derivation, for a0 := arg maxaQ0(x, a) we
have

V1(x) ≥ T Q0(x, a0).

But then

V1(x)− V0(x) ≥ R(x, a0) + γEP0
V0(x′)− V0(x),

from which the lower bound follows. Now let Pk be defined
as in the proof of Lemma 1, and assume the upper bound of
(2) holds up to k ∈ N. Then

Vk+1(x) = maxaQk+1(x, a) = maxa T ′Qk(x, a)

≤ maxa T Qk(x, a)

= maxa

[
R(x, a) + γEPk

Vk(x′)
]

≤ ‖R‖∞ + γ ‖Vk‖∞
≤ ‖R‖∞ +

γ

1− γ
[2 ‖V0‖∞ + ‖R‖∞]

≤ 1

1− γ
[2 ‖V0‖∞ + ‖R‖∞] ,

and combined with the fact that (2) holds for k = 0 this
proves the upper bound.

Theorem 1. Let T be the Bellman operator ((1) in the main
text). Let T ′ be an operator with the property that there ex-
ists an α ∈ [0, 1) such that for all Q ∈ Q, x ∈ X , a ∈ A,
and letting V (x) := maxbQ(x, b),

1. T ′Q(x, a) ≤ T Q(x, a), and
2. T ′Q(x, a) ≥ T Q(x, a)− α [V (x)−Q(x, a)].
Consider the sequence Qk+1 := T ′Qk with Q0 ∈ Q, and
Vk(x) := maxaQk(x, a). Then T ′ is optimality-preserving:
for all x ∈ X , (Vk(x) : k ∈ N) converges,

lim
k→∞

Vk(x) = V ∗(x),

and

Q∗(x, a) < V ∗(x) =⇒ lim sup
k→∞

Qk(x, a) < V ∗(x).

Furthermore, T ′ is also gap-increasing:

lim inf
k→∞

[
Vk(x)−Qk(x, a)

]
≥ V ∗(x)−Q∗(x, a).

Proof. Note that these conditions imply the conditions of
Lemma 1. Thus for all x ∈ X , (Vk(x) : k ∈ N) con-
verges to the limit Ṽ (x) ≤ V ∗(x). Now let Q̃(x, a) :=
lim supkQk(x, a). We have

Q̃(x, a) = lim sup
k→∞

T ′Qk(x, a)

≤ lim sup
k→∞

T Qk(x, a)

= lim sup
k→∞

[
R(x, a) + γEP max

b∈A
Qk(x′, b)

]
≤ R(x, a) + γEP lim sup

k→∞
max
b∈A

Qk(x′, b) (3)

= R(x, a) + γEP max
b

lim sup
k→∞

Qk(x′, b) (4)

= T Q̃(x, a), (5)

where in (3) we used Jensen’s inequality, and (4) follows
from the commutativity of max and lim sup. Now

Qk+1(x, a) = T ′Qk(x, a)

≥ T Qk(x, a)− α [Vk(x)−Qk(x, a)]

= R(x, a) + γEP Vk(x′)− αVk(x) +

αQk(x, a). (6)

Now, by Lemma 1 Vk(x) converges to Ṽ (x). Furthermore,
using Lemma 2 and Lebesgue’s dominated convergence the-
orem, we have

lim
k→∞

EP Vk(x′) = EP Ṽ (x′). (7)

We now take the lim sup of both sides of (6), which Lemma
2 guarantees exists, and obtain

Q̃(x, a) ≥ R(x, a) + γEP Ṽ (x′)− αṼ (x) + αQ̃(x, a)

= T Q̃(x, a)− αṼ (x) + αQ̃(x, a).

Thus

Q̃(x, a) ≥ 1

1− α

[
T Q̃(x, a)− αṼ (x)

]
, and

Ṽ (x) ≥ 1

1− α

[
max
a∈A
T Q̃(x, a)− αṼ (x)

]
Ṽ (x) ≥ max

a∈A
T Q̃(x, a).

Combining the above with (5), we deduce that

Ṽ (x) = max
a∈A
T Q̃(x, a) = max

a∈A

[
R(x, a) + γEP Ṽ (x′)

]
and, by uniqueness of the fixed point of the Bellman operator
over V , it must be that Ṽ = V ∗.

Now suppose that for some x ∈ X , ã ∈ A, we have

Q∗(x, ã) < V ∗(x).

By Condition 1

Qk(x, ã) = T ′Qk−1(x, ã)

≤ T Qk−1(x, ã)

= T Q∗(x, ã)− γEPã
[V ∗(x′)− Vk−1(x′)]

= Q∗(x, ã)− γEPã [V ∗(x′)− Vk−1(x′)] ,

where Pã := P (· |x, ã). Using (7) we take the lim sup on
both sides and find that

lim sup
k→∞

Qk(x, ã) ≤ Q∗(x, ã)− γEPã

[
V ∗(x′)− Ṽ (x′)

]
= Q∗(x, ã)

< V ∗(x).

We conclude that

Q∗(x, a) < V ∗(x) =⇒ lim sup
k→∞

Qk(x, a) < V ∗(x).

Hence, T ′ is optimality-preserving. To prove that T ′ is gap-
increasing, observe that the statement

lim inf
k→∞

[
Vk(x)−Qk(x, a)

]
≥ V ∗(x)−Q∗(x, a)

is now equivalent to

lim sup
k→∞

Qk(x, a) ≤ Q∗(x, a) (8)

since limk Vk(x) = V ∗(x). But we know (8) to be true from
Condition 1 (see the proof of Lemma 1).

Corollary 1. The consistent Bellman operator TC ((5) in the
main text) and consistent Q-value interpolation Bellman op-
erator TCQVI ((9) in the main text) are optimality-preserving
and gap-increasing.

2 Experimental Details: Bicycle
We used the bicycle simulator described by Randlov and Al-
strom (1998) with a reward function which encourages driv-
ing towards the goal. Recall that Randlov and Alstrom’s re-
ward function is

R(x, a) :=

 −1 if bicycle falls
0.01 if goal is reached
(4− ψ2)× 0.00004 otherwise

As noted by Randlov and Alstrom themselves, this reward
function is unsuitable for value iteration methods, since it
rewards driving away from the goal. Instead we use the fol-
lowing related reward function

R(x, a) :=

 −c if fallen
1.0 if goal reached
(π2/4− ψ2 − 1)× 0.001 otherwise

with c := (3
4π

2 − 1) × 0.001 the largest negative reward
achievable by the agent. Empirically, we found this reward
function easier to work with, while our results remained
qualitatively similar for similar reward functions. We further
use a discount factor of γ = 0.99.

We consider two sample-based operators on QZ,A, the
space of Q-functions over representative states. The sample-
based Q-value interpolation Bellman operator is defined as

TQVIQ(z, a) := R(z, a) + γ
1

k

k∑
i=1

max
b∈A

Q(x′i, b),

with k ∈ N and x′i ∼ P (· | z, a). The sample-based con-
sistent Q-value interpolation Bellman operator TCQVI is sim-
ilarly defined by sampling x′ from P :

T ′QVIQ(z, a) := R(z, a)+

γ

k

k∑
i=1

max
b∈A

[
Q(x′, b)−A(z |x′) (Q(z, b)−Q(z, a))

]
TCQVIQ(z, a) := min

{
TQVIQ(z, a), T ′QVIQ(z, a)

}
.

In both cases, we use Q-value interpolation to define a Q-
function over X :

Q(x, a) := Ez∼A(· | x)Q(z, a).

Bellman
operator

A.L.

Fraction of Episodes Ending In Fall

Iterations

8-grid

10-grid

Persistent A.L. Consistent
operator

Iterations

Fraction of Episodes Ending At Goal

Figure 1: Top. Falling and goal-reaching frequency for
greedy policies derived from value iteration on a 8× · · · × 8
grid. Bottom. The same, for a 10× · · · × 10 grid.

For each operator T ′, we computed a sequence of Q-
functions Qk ∈ QZ,A using an averaging form of value
iteration:

Qk+1(z, a) = (1− η)Qk(z, a) + ηT ′Qk(z, a),

applied simultaneously to all z ∈ Z and a ∈ A. We chose
this averaging version because it led to faster convergence,
and lets us take k = 1 in the definition of both operators.
From a parameter sweep we found η = 0.1 to be a suitable
step-size.

Our multilinear grid was defined over the six state vari-
ables. As done elsewhere in the literature, we defined our
grid over the following bounded variables:

ω ∈
[
−4

9
π,

4

9
π

]
,

ω̇ ∈ [−2, 2],

θ ∈
[
− π

15
,
π

15

]
,

θ̇ ∈ [−0.5, 0.5] ,

ψ ∈ [−π, π],

d ∈ [10, 1200].

Values outside of these ranges were accordingly set to the
range’s minimum or maximum.

For completeness, Figure 1 compares the performance of
the Bellman and consistent Bellman operators, as well as
advantage learning and persistent advantage learning (with
α = 0.1), on 8 × · · · × 8 and 10 × · · · × 10 grids. Here,
the usual Bellman operator is unable to find a solution to
the goal, while the consistent Bellman operator successfully
does so. The two other operators also achieve superior per-
formance compared to Bellman operator, although appear
slightly more unstable in the smaller grid setting.

3 Experimental Details: ALE
We omit details of the DQN architecture, which are provided
in Mnih et al. (2015). A frame is a single emulation step
within the ALE, while a time step consists of four consecu-
tive frames which are treated atomically by the agent.

Our first Atari 2600 experiment (Stochastic Minimal set-
ting) used stochastic controls, which operate as follows: at
each frame (not time step), the environment accepts the
agent’s action with probability 1−p, or rejects it with proba-
bility p. If an action is rejected, the previous frame’s action is
repeated. In our setting, the agent selects a new action every
four frames; in this situation, the stochastic controls approx-
imate a form of reaction delay. This particular setting is part
of the latest Arcade Learning Environment. For our experi-
ments we use the ALE 0.5 standard value of p = 0.25, and
trained agents for 100 million frames.

Our second Atari 2600 experiment (Original DQN set-
ting) was averaged over three different trials, ran for 200
million frames (instead of 100 million), defined a lost life
as a termination signal, and did not use stochastic controls.
This matches the experimental setting of Mnih et al. (2015).
A full table of our results is provided in Table 1.

Our last experiment took place in the Original DQN set-
ting. We generated a trajectory from a trained DQN agent
playing an ε-greedy policy with ε = 0.05. The full trajec-
tory (up to the end of the episode) was recorded in this way.
We then queried the value functions of the trained agents, in-
cluding the DQN used to generate the trajectory, in order to
generate Figure 4 of the main text. For clarity we report ac-
tion gaps averaged according to a rolling window of length
50.

Out of the 60 games for which we report results, 5 are new
when compared to the table of results provided by Bellemare
et al. (2013). These five games are identified with a † in Table
1.

DQN Implementation Details
Recall that DQN maintains two networks in parallel: a pol-
icy network, which is used to select actions and is updated at
every time step, and a target network. The target network is
used to compute the error term ∆Q, and is only updated ev-
ery 10,000 time steps(Mnih et al., 2015). In our experiments
we also used this target network to compute the ∆ALQ and
∆PALQ, including the added correction term. Our operators
performed worse when the correction term was instead com-
puted from the policy network.

Parameter Selection
We used five training games (ASTERIX, BEAM RIDER,
PONG, SEAQUEST, SPACE INVADERS) to select the α pa-
rameter for both of our operators. Specifically, we trained
agents using our second experimental setup with parame-
tersα ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}, evaluated them ac-
cording to the highest score achieved, and manually selected
the α value which seemed to achieve the best performance.
Note that α = 0.0 corresponds to DQN in both cases. Figure
2 depicts the results of this parameter sweep.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.

2013. The Arcade Learning Environment: An evaluation
platform for general agents. Journal of Artificial Intelli-
gence Research 47:253–279.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.

Randlov, J., and Alstrom, P. 1998. Learning to drive a bicy-
cle using reinforcement learning and shaping. In Proceed-
ings of the Fifteenth International Conference on Machine
Learning.

Game Bellman Advantage Learning Persistent A.L.
ASTERIX 6074.98 12852.08 19564.90

BEAM RIDER 9316.10 10054.58 13145.34
PONG 19.80 19.66 19.76

SEAQUEST 5458.17 8670.50 13230.74
SPACE INVADERS 2067.19 3460.79 3277.59

ALIEN 3154.67 4990.91 5699.81
AMIDAR 969.88 1557.43 1451.65

ASSAULT 4573.67 3661.51 3304.33
ASTEROIDS 1827.97 1924.42 1673.52

ATLANTIS 636657.62 553591.67 1465250.00
BANK HEIST 511.00 633.63 874.99

BATTLE ZONE 28082.91 28789.29 34583.07
BERZERK 667.61 747.26 1328.25
BOWLING 74.62 57.41 71.59

BOXING 88.66 93.94 94.30
BREAKOUT 378.69 425.32 431.89
CARNIVAL 5238.14 5111.40 4679.93

CENTIPEDE 5719.11 4225.18 4539.55
CHOPPER COMMAND 8195.88 5431.36 5734.93

CRAZY CLIMBER 114105.56 123410.71 130002.71
DEFENDER† 16746.68 30643.59 32038.93

DEMON ATTACK 23212.19 27153.48 70908.17
DOUBLE DUNK -6.23 -0.15 -2.51

ELEVATOR ACTION 26675.00 27088.89 29100.00
ENDURO 776.14 1252.70 1343.10

FISHING DERBY 11.65 21.32 28.13
FREEWAY 31.14 31.72 32.30

FROSTBITE 1485.42 2305.82 3248.96
GOPHER 8479.98 11912.68 10611.81

GRAVITAR 448.74 417.65 446.92
H.E.R.O. 18490.97 24788.86 24175.79

ICE HOCKEY -2.13 -1.24 -0.25
JAMES BOND 867.84 848.46 772.09

KANGAROO 9157.98 10809.16 11478.46
KRULL 8500.48 9548.92 8689.81

KUNG-FU MASTER 25977.53 32182.99 34650.91
MONTEZUMA’S REVENGE 0.64 0.42 1.72

MS. PAC-MAN 3081.29 4065.80 3917.55
NAME THIS GAME 8585.03 11025.26 10431.33

PHOENIX† 14278.95 22038.27 14495.56
PITFALL!† 0.00 0.00 0.00

POOYAN 4736.79 4801.27 5858.84
PRIVATE EYE 957.83 5276.16 339.15

Q*BERT 10840.83 14368.03 14254.78
RIVER RAID 7315.20 10585.12 12813.27

ROAD RUNNER 38042.07 52351.23 37856.16
ROBOTANK 61.97 69.31 70.53

SKIING -13049.42 -13264.51 -12173.35
SOLARIS† 4638.85 4785.16 3274.70

STAR GUNNER 55558.27 61353.59 61521.87
SURROUND -5.79 -4.15 0.72

TENNIS 0.00 0.00 0.00
TIME PILOT 5788.96 8969.12 8749.26

TUTANKHAM 200.17 245.22 197.33
UP AND DOWN 12831.57 13909.74 13542.07

VENTURE 373.79 198.69 243.75
VIDEO PINBALL 611840.72 543504.00 542052.00

WIZARD OF WOR 2410.47 9541.14 10254.01
YAR’S REVENGE† 21440.45 24240.03 17141.56

ZAXXON 6416.06 9129.61 8155.60
Times Best 12 21 31

Table 1: Highest performance achieved by each of our operators. For each game, the score of the best operator is highlighted.
Games with a † were not used by Bellemare et al. (2013). See Section 4 of the main text for more details.

ASTERIX BEAM RIDER PONG

SEAQUEST SPACE INVADERS

DQN

Persistent A.L.
A.L.

Figure 2: Performance of trained agents in function of the α parameter. Note that α = 1.0 does not satisfy our theorem’s
conditions. We attribute the odd performance of Seaquest agents using Persistent Advantage Learning with α = 0.9 to a
statistical issue.

