
Count-Based Frequency Estimation With Bounded Memory

Marc G. Bellemare
Google DeepMind

London, United Kingdom
bellemare@google.com

Abstract
Count-based estimators are a fundamental building
block of a number of powerful sequential predic-
tion algorithms, including Context Tree Weighting
and Prediction by Partial Matching. Keeping exact
counts, however, typically results in a high memory
overhead. In particular, when dealing with large al-
phabets the memory requirements of count-based
estimators often become prohibitive. In this pa-
per we propose three novel ideas for approximat-
ing count-based estimators using bounded mem-
ory. Our first contribution, of independent inter-
est, is an extension of reservoir sampling for sam-
pling distinct symbols from a stream of unknown
length, which we call K-distinct reservoir sam-
pling. We combine this sampling scheme with a
state-of-the-art count-based estimator for memory-
less sources, the Sparse Adaptive Dirichlet (SAD)
estimator. The resulting algorithm, the Budget
SAD, naturally guarantees a limit on its memory
usage. We finally demonstrate the broader use of
K-distinct reservoir sampling in nonparametric es-
timation by using it to restrict the branching fac-
tor of the Context Tree Weighting algorithm. We
demonstrate the usefulness of our algorithms with
empirical results on two sequential, large-alphabet
prediction problems.

1 Introduction
Undoubtedly, counting is the simplest way of estimating the
relative frequency of symbols in a data sequence. In the se-
quential prediction setting, these estimates are used to assign
to each symbol a probability proportionate to its frequency.
When dealing with binary alphabets the counting approach
gives rise to the Krichevsky-Trofimov estimator, known to be
minmax optimal [Krichevsky and Trofimov, 1981]. Count-
based approaches are also useful in dealing with large alpha-
bets, and a number of methods coexist [Katz, 1987; Tjalkens
et al., 1993; Friedman and Singer, 1999; Hutter, 2013],
each with its own statistical assumptions and regret proper-
ties. While these simple estimators deal only with mem-
oryless sources – whose output is context invariant – they
play a critical role as building blocks for more complicated

estimators [Cleary and Witten, 1984; Willems et al., 1995;
Tziortziotis et al., 2014].

We are interested in the large alphabet setting as it natu-
rally lends itself to the compression of language data, where
symbols consist of letters, phonemes, words or even sentence
fragments. This setting is also of practical interest in rein-
forcement learning, for example in learning dynamical mod-
els for planning [Farias et al., 2010; Bellemare et al., 2013].
In both contexts, the statistical efficiency of count-based es-
timators makes them excellent modelling candidates. How-
ever, the memory demands of such estimators typically in-
crease linearly with the effective alphabet size M , which is
problematic when M grows with the sequence length. Per-
haps surprisingly, this issue is more than just a theoretical
concern and often occurs in language data [Gale and Church,
1990].

Our work is also motivated by the desire to improve the
Context Tree Weighting algorithm [CTW; Willems et al.,
1995] to model k-Markov large alphabet sources. While
CTW is a powerful modelling technique, its practical mem-
ory requirements (linear in the size of the sequence) often pre-
clude its use in large problems. Here, even when the alphabet
size is fixed and small, the number of observed k-order con-
texts typically grows with the sequence length. We are par-
ticularly interested in reducing the long term memory usage
of such an estimator, for example when estimating attributes
of internet packets going through a router or natural language
models trained on nonstationary data.

Our solution takes its inspiration from the reservoir sam-
pling algorithm [Knuth, 1981] and the work of Dekel et al.
[2008] on budget perceptrons. We propose an online, ran-
domized algorithm for sampling distinct symbols from a data
stream; by choosing a sublinear reservoir size, we effectively
force our statistical estimator to forget infrequent symbols.
We show that this algorithm can easily be combined with a
typical count-based estimator, the Sparse Adaptive Dirich-
let estimator, to guarantee good statistical estimation while
avoiding unbounded memory usage. As our results demon-
strate, the resulting estimator is best suited to sources that
emit a few frequent symbols while also producing a large pool
of low-frequency “noise”. We further describe a simple ap-
plication of our sampling algorithm to branch pruning within
the CTW algorithm.

The idea of sampling distinct symbols from a stream is

well-studied in the literature. Perhaps most related to ours
is the work of Gibbons and Matias [1998], who proposed the
notion of a concise sample to more efficiently store a “hot
list” of frequent elements. Their algorithm is also based on
reservoir sampling, but relies on a user-defined threshold and
probabilistic counting. By contrast, our algorithm maintains
a reservoir based on a random permutation of the data stream,
which avoids the need for a threshold. Gibbons [2001] pro-
posed an algorithm called Distinct Sampling to estimate the
number of distinct values within a data stream. Similar to
the hot list algorithm, Distinct Sampling employs a growing
threshold, which is used to determine when infrequent sym-
bols should be discarded. Metwally et al. [2005] proposed
to track frequent symbols using a linked list and a hash table.
Their Space Saving algorithm aims to find all frequently oc-
curring items (heavy hitters), rather than provide a frequency-
biased sample; a similar scheme was also proposed by De-
maine et al. [2002]. Manku and Motwani [2002] proposed a
probabilistic counting and halving approach to find all items
whose frequency is above a user-defined threshold. Charikar
et al. [2004] showed how to use a probabilistic count sketch
in order to find frequent items in a data stream. While count
sketches may seem the natural fit for count-based estimators,
their memory requirements grow quadratically with the accu-
racy parameter ε; by contrast, our algorithm has only a linear
dependency on the implied ε.

2 Background

In the sequential prediction setting we consider, an algorithm
must make probabilistic predictions over a sequence of sym-
bols observed one at a time. These symbols belong to a finite
alphabet X , with x1:n := x1 . . . xn ∈ Xn denoting a string
drawn from this alphabet. A probabilistic prediction consists
in assigning a probability to a new symbol xn+1 given that
x1:n has been observed.

Let [n] := {1, . . . , n}. We denote the set of finite strings
by X ∗ :=

⋃∞
i=0 X i, denote the concatenation of strings s

and r by sr, and use ε to represent the empty string. For
a set B ⊆ X , we write x1:n \ B := (xi : i ∈ [n], xi /∈ B)
to denote the substring produced by excising from x1:n the
symbols in B. We denote by Nn(x) := N(x, x1:n) the
number of occurrences of x ∈ X within x1:n, and write
τn(x) := τ(x, x1:n) for the time of first occurrence of x in
x1:n, with τ(x, x1:n) := n + 1 whenever x /∈ x1:n. We de-
note the set of permutations of x1:n by P(x1:n) and the dis-
crete uniform distribution over X by UX (·). Finally, unless
otherwise specified, we write log to mean the natural loga-
rithm.

A coding distribution ρ is a sequence (ρt : t ∈ N) of prob-
ability distributions ρt : X t → [0, 1] each respecting

1.
∑
x∈X

ρt+1(x1:tx) = ρt(x1:t), and

2. ρ0(ε) = 1.

In what follows the subscript to ρt is always implied from its
argument; we therefore omit it. A coding distribution assigns

conditional probabilities according to

ρ(x |x1:t) :=
ρ(x1:tx)

ρ(x1:t)
,

which after rearrangement yields the familiar chain rule
ρ(x1:n) :=

∏n
t=1 ρ(xt |x1:t−1).

A source is a distinguished type of coding distribution
which we assume generates sequences. When a coding dis-
tribution is not a source, we call it a model. A source
(µt : t ∈ N) is said to be memoryless when µt(x |x1:t) =
µt(x | ε) =: µt(x) for all t, all x ∈ X , and all sequences
x1:t ∈ X t; for B ⊆ X , we then write µt(B) :=

∑
x∈B µt(x).

When µt(x) := µ1(x) for all t, we say it is stationary and
omit its subscript.

Let x1:n ∈ Xn and let µ be an unknown coding distribu-
tion, for example the source that generates x1:n. We define
the redundancy of a model ρ with respect to µ as

Fn(ρ, µ) := F(ρ, µ, x1:n) := − log
ρ(x1:n)

µ(x1:n)
.

The redundancy Fn(ρ, µ) can be interpreted as the excess bits
(or nats) required to encode x1:n using ρ rather than µ. The
expectation of this redundancy with respect to a random se-
quence x1:n is the Kullback-Leibler divergence KLn(µ ‖ ρ):

KLn(µ ‖ ρ) := E
x1:n∼µ

[Fn(ρ, µ)] .

Typically, we are interested in how well ρ compares to a class
of coding distributionsM. The redundancy of ρ with respect
to this classM is defined as

Fn(ρ,M) := max
ρ′∈M

Fn(ρ, ρ′).

Intuitively, Fn(ρ,M) measures the cost of encoding x1:n
with ρ rather than the best model inM.

2.1 The Sparse Adaptive Dirichlet Estimator
The Sparse Adaptive Dirichlet estimator [SAD; Hutter, 2013]
is a count-based frequency estimator designed for large-
alphabet sources with sparse support. Informally, the SAD
predicts according to empirical frequencies in x1:n, while re-
serving some escape probability γ for unseen symbols. Given
At :=

⋃t
i=1{xi} the set of symbols seen up to time t and a

probability distribution wt over X \ At, the SAD estimator
predicts according to

ρSAD(x |x1:t) :=

{
Nt(x)
t+γt

if x ∈ At,
γtwt(x)
t+γt

otherwise.

γt := γ(t,At) :=


1 if t = 0,
0 if At = X ,
|At|

log
t+1
|At|

otherwise.

Let MSAD be the class of memoryless sources generating
symbols from a subalphabet A ⊆ X of size M . The re-
dundancy of the SAD estimator with respect to this class is
bounded as

Fn(ρSAD,MSAD) ≤ M − 1

2
log n+O

(
M log log

n

M

)
,

making it particularly apt at dealing with sparse-support
sources.

3 Budget Sequential Estimation
The SAD estimator requires counting the occurrence of all
encountered symbols. This is usually undesirable when the
observed alphabet grows with the sequence length. Here we
propose a sampling solution to this problem; this solution,
K-distinct reservoir sampling, lets us impose a memory con-
straint on our estimator. More broadly, our sampling scheme
can be combined with any algorithm with a non-parametric
component; as an illustration, in Section 5.2 we apply our
solution to restrict the branching factor of the Context Tree
Weighting algorithm.

Let µ be an unknown source. We are given a parameter
K ∈ N and seek a count-based estimator that predicts x1:n ∼
µ sequentially without using more than O(K) memory. We
call this problem the budget, sequential, count-based predic-
tion setting. While similar settings have been studied exten-
sively in the context of linear classifiers [Dekel et al., 2008;
Cavallanti et al., 2007; Orabona et al., 2008] and in relation
to the 0–1 loss [Lu and Lu, 2011], to the best of our knowl-
edge the notion of a budget count-based frequency estimator
is novel. From a practical perspective, we are interested in
prediction problems for which the alphabet is large but the
source skewed towards a few high-frequency symbols; it is
for these problems that we expect meaningful prediction to
be achievable.

Our competitor class M is the set of budget multinomial
distributions. More specifically, we consider models of the
form ρ(x ; Z, θ, θ0) with Z := {xi1 , . . . , xiK} ⊆ X is a sub-
alphabet of cardinality K; θ ∈ RK ; and θ0 ∈ R. Each such
model predicts according to

ρ(x ; Z, θ, θ0) :=

{
θj if x = xij ∈ Z
θ0 / |X \ Z| otherwise, (1)

with the usual requirement that
∑
x∈X ρ(x ; Z, θ, θ0) = 1.

Let µ be a memoryless stationary source and for B ⊆ X let

µB(x) =

{
0 if x /∈ B,
µ(x)/µ(B) otherwise.

Finally, arrange X := {x1, x2, . . . , xm} in order of decreas-
ing probability, i.e. such that for all i, µ(xi) ≥ µ(xi+1).
Lemma 1. The model ρ∗µ ∈ M which minimizes KL1(µ ‖ ·)
is

Z∗ = arg min
Z:|Z|=K

[
µ(X \ Z)KL1(µX\Z ‖UX\Z)

]
θ∗(x) = µ(x) ∀x ∈ Z∗ θ∗0 = µ(X \ Z∗).

Proof (sketch). We first show that for a fixed Z , the optimal
parameters correspond to those given above. We then use the
convexity property of theKL divergence, namely that for λ ∈
[0, 1] and pairs of probability distributions (p1, q1), (p2, q2)

KL1

(
λp1 + (1− λ)p2 ‖λq1 + (1− λ)q2

)
≤ λKL1(p1 ‖ q1) + (1− λ)KL1(p2 ‖ q2),

with equality when (p1, q1) and (p2, q2) have disjoint support.
The result follows by setting p1 = q1 = µZ , and taking p2, q2
to be respectively µX\Z and ρ∗µ,X\Z = UX\Z .

The full proof is provided in the supplemental. The next re-
sult shows that the optimal Z∗ is composed of a combination
of the most and least frequent symbols according to µ.

Lemma 2. Let Z∗ be the subalphabet associated with the
model ρ∗µ. Then Z∗ = H ∪ L, where H,L ⊆ X are disjoint
sets such that

• for all x ∈ H, y ∈ X \H , µ(x) ≥ µ(y), and

• for all x ∈ L, y ∈ X \ L, µ(x) ≤ µ(y).

Proof (sketch). The proof follows by using the identity

KL(X ‖UX) = log |X | −H(X)

for a discrete random variable X distributed over X ,
with H(X) its entropy [Cover and Thomas, 1991].
We then show that, for Z = {xi}, the function
µ(X \ Z)KL1(µX\Z ‖UX\Z) is concave in i. The result is
then extended to the general case Z = {xi1 , . . . xiK}.

When µ is known, ρ∗µ can be constructed in time O(K) by
considering the different choices of H and L. Furthermore,
the set Ẑ containing the K most frequent symbols achieves
an expected redundancy at most 1

e + K
|X | logK greater than

the expected redundancy of ρ∗µ (Lemma 3, supplemental), in
our experiments and for large alphabets this redundancy is
negligible. In the sequel we therefore assume that Z∗ = Ẑ .

However, we are interested in the setting where µ is un-
known. In this case, our budget requirement poses a circular
problem: we need good estimates of µ to find Z∗, and si-
multaneously needZ∗ to estimate µ (with bounded memory).
Our solution is to maintain a time-varying set Y which con-
tains (with high probability) the K most frequent symbols.

We call our algorithmK-distinct reservoir sampling, in re-
lation to the reservoir sampling algorithm [Knuth, 1981]. As
we shall see in Section 3.2, we can leverage K-distinct reser-
voir sampling to approximate the SAD estimator by estimat-
ing the frequency of symbols in Y . We call the resulting ap-
proximation the Budget Sparse Adaptive Dirichlet estimator,
or Budget SAD for short.

3.1 K-Distinct Reservoir Sampling
Let x1:n be a string of a priori unknown length and let
K ∈ N. Reservoir sampling [Algorithm R; Knuth, 1981] is
an algorithm for sampling y := y1 . . . yK ∈ XK from x1:n,
without replacement and usingO(K) memory. It proceeds as
follows:

1. Randomly assign x1 . . . xK to y1 . . . yK .

2. For t = K + 1, . . . , n, draw r ∼ U ({1, . . . , t}). If

(a) r ≤ K, then assign xt to yr;
(b) otherwise do nothing.

We would like to use reservoir sampling to sample an approx-
imation to Z∗. However, Algorithm R is inadequate for our
purposes: since y may contain duplicates, sampling K dis-
tinct items may require significant memory. Our solution is
to modify Algorithm R to compactly represent duplicates. We
begin with the following observation:

Observation 1. Let x̃1:n be a random permutation of x1:n,
that is x̃1:n ∼ U (P(x1:n)). Then y := x̃1 . . . x̃K is a sample
of size K sampled without replacement from x1:n.

We can therefore interpret Algorithm R as maintaining the
first K elements of a random permutation of x1:n. By anal-
ogy, we define the K-distinct operator, which describes the
first K distinct elements of a string:

Definition 1. Let w1:m ∈ Xm. The K-distinct operator φK :

X ∗ → ⋃K
i=0 X i is recursively defined as

φK(w1:m) :=

{
ε K = 0 or m = 0
w1φK−1(w1:m\{w1}) otherwise.

The next step is to use this operator to define a K-distinct
sample of x1:n. From here onwards, we assume without loss
of generality that sequences contain at least K distinct sym-
bols.

Definition 2. Let Yn := Y (x1:n) be a random variable tak-
ing values in XK , and let x̃1:n ∼ U (P(x1:n)). Then Yn is a
K-distinct sample of x1:n if

Pr{Yn = y} = Pr{φK(x̃1:n) = y},
In our algorithm, the simple reservoir is replaced by a K-

concise summary which keeps track of these K first distinct
symbols and their times τ(·, w1:m) of first occurence:

Definition 3. Let w1:m ∈ Xm with y1 . . . yK+1 :=
φK+1(w1:m). The K-concise summary of w1:m is a vector
of K pairs S := 〈(yi, di) ∈ X × N〉 such that, for all i ≤ K,

1. di = τ(yi+1, w1:m)− τ(yi, w1:m), or equivalently

2. Di :=
∑i−1
j=1 dj = τ(yi, w1:m)− 1 for i ∈ [K + 1].

Each pair (yi, di) in the K-concise summary of a string
thus describes this string’s ith distinct symbol and the gap di
between this distinct symbol and the next (Figure 1, bottom
row).

A B B A C B A D A B

A B B A C B A

A, 1 B,3 C,3

C

A B B A C B A D A B

A B B

A, 1 B,2 C,5

C

C B AAC

Sn

x̃1:n x̃1:n+1

Sn+1

r = 3

Figure 1: Insertion of ‘C’ at r = 3 into a 3-concise summary.

In the spirit of Algorithm R, K-distinct reservoir sampling
incrementally generates a random permutation x̃1:n through
a sequence of insertions, and maintains the K-concise sum-
mary of this permutation. Effectively, this summary allows
us to describe the beginning of x̃1:n compactly (using O(K)
memory), while preserving the information needed for later
updates.

For x ∈ X , r ∈ [DK+1], and S := 〈(yi, di) : i ∈ [K]〉,
define the vector and set of stored symbols

y(S) := 〈yi : i ∈ [K]〉 Y(S) := {yi : i ∈ [K]}

as well as the indices I : Y(S) → [K] and J : [DK+1] →
[K]:

I(x) := i ∈ [K] s.t. yi = x

J(r) := max{i ∈ [K + 1] : r ≤ Di}.
In K-distinct reservoir sampling (Algorithm 1), I(x) and
J(r) are used to indicate, respectively, the index of x in S
and the index in S at which a new symbol should be inserted.
For example, in Figure 1 (left) I(‘B′) = 2 and J(3) = 3.

Algorithm 1 K-Distinct Reservoir Sampling.

Initially: S = 〈〉
SAMPLE(K,x1:n)

for t = 1 . . . n do
Observe xt
Draw r ∼ U ({0, . . . , t− 1})
if r > DK+1 then do nothing
else if xt /∈ Y(S) then INSERT(S, xt, r)
else if I(xt) < J(r) then dJ(r)−1 ← dJ(r)−1 + 1
else MERGE(S, xt) and INSERT(S, xt, r)

Output y(S)

INSERT(S, xt, r)
Insert (xt, DJ(r) − r + 1) at position J(r) in S
if J(r) > 1 then dJ(r)−1 ← r −DJ(r)−1
if |S| > K then remove item K + 1 from S

MERGE(S, xt)
dI(xt)−1 ← dI(xt)−1 + dI(xt)

Remove item I(xt) from S

Theorem 1. When Algorithm 1 terminates, its summary S is
the K-concise summary of a permutation x̃1:n sampled uni-
formly at random from P(x1:n).

Proof (sketch). Let r1:n be the string of random integers gen-
erated by Algorithm 1. These induce a sequence (x̃t1:t : t ∈
N) of permutations of x1:n. To show the correctness of Al-
gorithm 1, we simply show that its operations mirror this se-
quence of permutations and incrementally generate the se-
quence of K-concise summaries of x̃t1:t. The different cases
handled by Algorithm 1 then arise from different kinds of in-
sertions.

Corollary 1. Algorithm 1 outputs a K-distinct sample of
x1:n.

Note here the significance of Theorem 1: we can simulate,
in a fully online fashion and in O(K) memory and running
time, the sampling of a permutation x̃1:n ∼ U (P(x1:n)) and
the subsequent selection of its first K distinct symbols. In-
terestingly enough, the use of random insertions, rather than
swaps (as is done in Algorithm R), seems necessary to guar-
antee the correct distribution on y(S).

3.2 The Budget SAD Estimator
Naturally, we wish to useK-distinct reservoir sampling to ap-
proximate the setZ∗ of frequently occurring symbols in x1:n.

However, the di variables do not estimate the frequencies of
their respective symbols. To estimate these frequencies, our
Budget Sparse Adaptive Dirichlet estimator augments a K-
concise summary with count information. The new summary
is a vector of tuples

U := 〈(yi, di, ci) ∈ X × N× N : i ∈ [K]〉
where ci represents the number of occurrences of yi since its
last entering the summary.

Algorithm 2 Budget SAD.
Initially: U = 〈〉, z = 0

for t = 1 . . . n do
Predict xt according to Equation 2
Observe xt
Update U as per Algorithm 1
if xt is new in U then cI(xt) ← 1
else if xt ∈ Y(U) then cI(xt) ← cI(xt) + 1
else z ← z + 1 // discard xt

New symbols are added to U with c = 1; then, whenever
a symbol already present in U is observed, its count is incre-
mented. Recall that the SAD prediction depends on Nt(x),
the number of occurrences of x in x1:t, as well as the sub-
alphabet At (Section 2.1). Our process yields Yt := Y(Ut)
as an approximation to At, as well as an approximate count
function N̂t : X → R, with N̂t(x) = 0 for x /∈ Yt. The al-
gorithm also tracks zt, the number of discarded symbols, and
approximates the SAD prediction rule as

N̂t(x) := (t− zt)
ct,It(x)∑
x′ ct,It(x′)

for x ∈ Yt

γ̂t := γ(t,Yt) + zt

Ñt(x) := max
{
N̂t(x), γ̂twt(x)

}
ρB(x |x1:t) ∝

{
Ñt(x) if x ∈ Yt,
γ̂twt(x) otherwise. (2)

where ct,· denote the stored counts at time t, and∑
x∈X ρ

B(x ‖ ·) = 1. Our Budget SAD is designed to over-
estimate the probability of frequent symbols (via the (t− zt)
renormalization); the definition of Ñt(x) ensures that sym-
bols in Yt are never deemed less likely than unseen symbols.
The process is summarized in Algorithm 2.

The zt term keeps track of discarded counts; this is to cor-
rect for two types of counting errors. First, the counter ct,I(x)
for a symbol x ∈ Yt only equals Nt(x) if 1) it was never dis-
carded and 2) never removed from the reservoir; in general,
ct,I(x) is an underestimate for Nt(x). We also need to com-
pensate for our lack of knowledge of |At| in computing γ̂t,
the probability mass associated with unseen symbols. Effec-
tively, zt mitigates both issues by rectifying the stored counts
so as to approximate the SAD denominator. In particular,
when Ñ(x) = N̂(x) for all x ∈ Y , we have∑

x∈Yt

Ñt(x) + γ̂t = t+ γ(t,Yt)

One may also increment zt to keep tracks of counts that are
discarded when a symbol leaves the reservoir; however, this
does not affect our redundancy bound.

In addition to these counting errors, the Budget SAD suf-
fers a redundancy cost from forgetting symbols. Clearly,
this problem arises only when symbols are removed from
the reservoir. As we now show, the Budget SAD achieves
low redundancy with respect to the optimal memory-bounded
model (Section 3) whenever the source’s tail distribution is
close to uniform.

4 Analysis
Let µ be a memoryless stationary source and let x1:n ∼ µ.
We compare our Budget SAD estimator ρB to the optimal
memory-bounded model ρ∗µ ∈ M described in Section 3.
In our analysis we consider the associated optimal set Z∗
of size K∗, and derive a redundancy bound which depends
on the probability mass µ(Z∗) as well as the reservoir size
K > K∗. For clarity, we take the SAD probability distribu-
tion wt(·) to be uniform over the alphabet X , noting that our
result extends to the more general case.

We take a conservative approach and bound the expected
redundancy E

[
Fn(ρB, ρ∗µ)

]
according to the probability of a

best-case scenario. In this best-case scenario, the symbols in
Z∗ are never ejected from the reservoir. We define a good
event Gn(x) :=

{
cn,In(x) = Nn(x)

}
which occurs when the

stored count for xmatches the total number of occurrences of
x in x1:n; this implies that ct,It(x) = Nt(x) for all t ∈ [n].
The instantaneous redundancy of our algorithm at time t then
depends on the probability of Gn(xt). Critically, we set K so
that Gn(x) must occur with probability 1− δ for all x ∈ Z∗.
For B ⊆ X and a memoryless stationary source µ, define

υ(B, µ) := min
x∈B

µ(x).

We first provide a lemma stating the conditions under which
Gn(B) :=

⋂
x∈BGn(x) occurs with high probability.

Lemma 3. Let B ⊆ X , δ ∈ (0, 1), and K ≥
υ(B, µ)−1 log(|B|nδ−1). Then

Pr{Gn(B)} ≥ 1− δ.
Proof (sketch). The event Gn(x) occurs if x never leaves the
K-concise summary after entering it. Because K-distinct
reservoir sampling induces a permutation of x1:n, we can
view the corresponding K-distinct sample as generated from
independent draws without replacement from µ. Computing
the probability that a symbol x ∈ B is not drawn in K tries
and taking union bounds yields the result.

Our main theoretical result follows from this lemma:
Theorem 2. Let δ = o

(
(log |X |+ n log n)−1

)
and K ≥

υ(Z∗, µ)−1 log(|Z∗|nδ−1). Let ZAUG ⊆ X of size K maxi-
mizing µ(·), and let κ := K(1 − µ(ZAUG))−1. The expected
redundancy of ρB with respect to ρ∗µ is bounded as

E
[
Fn(ρB, ρ∗µ)

]
≤ µ(Z∗) |Z

∗|−1
2 log n+

(1− µ(Z∗))κ log2 n+ O(κ log(κn) log log n),

where the expectation is with respect to both x1:n ∼ µ and
r1:n, the random integers chosen by Algorithm 1.

Proof (sketch). We consider a partition of the event space at
each time step:

1. xt ∈ Z∗ and Gn(Z∗),
2. xt ∈ Z∗ and ¬Gn(Z∗), or
3. xt /∈ Z∗.

In the first case, the Budget SAD correctly estimates the prob-
ability of xt, and exhibits similar regret guarantees to the
SAD. The second case contributes negligible expected redun-
dancy, since Pr{¬Gn(Z∗)} is small. The final case gives rise
to most of the expected redundancy, which we bound by pro-
viding bounds on zt (which lets us estimate the probability
of symbols not in the K-concise summary), which itself de-
pends on a bound on Dt,K+1, the expected gap between the
first and K + 1th symbols in our summary. Let r1:n be the
random draws of r within K-distinct reservoir sampling. We
show that

E
x1:n,r1:n

[Dt,K+1] ≤ κ− 1,

which provides the last two terms of our bound.

Remark 1. The expected redundancy of ρB with respect to ρ∗µ
is also bounded as

E
[
Fn(ρB, ρ∗µ)

]
≤ O(n log n),

and in particular the bound of Theorem 2 is meaningful when-
ever κ log n = o(n).

The three terms in Theorem 2 correspond respectively to 1)
the cost of learning µ over Z∗, 2) estimating the quantity 1−
µ(Z∗), and 3) the redundancy for symbols which enter, but
do not remain in our reservoir. In the presence of a favourable
distribution (i.e., when (1− µ(Z∗)/(1− µ(ZAUG)) is small),
our algorithm is asymptotically optimal, in the sense that its
per-step redundancy goes to 0 as n → ∞. This is the case,
for example, when the source is in the classM of memory-
bounded models (Equation 1) and |X | � n.

As a final note, Lu and Lu [2011] recently provided a Ω(n)
lower bound on the regret suffered by a bounded-memory, se-
quential prediction algorithm in the 0–1 loss setting. We point
out that our analysis does not contradict their bound since, in
the worst case, the second term may grow superlinearly (see
Remark 1 and Section 6 below). In this case, one may (triv-
ially) construct a Bayesian mixture between ρB and a uniform
estimator to achieve O(n log |X |) regret.

5 Empirical Evaluation
The Budget SAD is especially motivated by the desire to min-
imize memory usage in the presence of infrequent symbols.
Here we present two experiments showing the practical value
of our approach.

5.1 Synthetic Image Domain
We first consider a synthetic image domain to demonstrate
the effectiveness of our algorithm in the presence of symbol
noise. In this domain, the source first selects one ofm images
uniformly at random, then corrupts this image with probabil-
ity p and otherwise leaves it unchanged. Here we consider
50 × 60, 8-bit images and a uniform noise corruption model

Figure 2: Sample from the synthetic image source with m =
4 and p = 0.9. Symbols are corrupted using uniform pixel
noise.

 5

 6

 7

 8

 0 5 10 15 20 25 30

SAD (K = 99,895)

Source entropy

Budget SAD

Bi
ts

 p
er

 s
ym

bo
l

Memory budget K

p=0.1

 29

 30

 31

 32

 0 20 40 60 80 100 120 140

SAD (K = 899,828)

Source entropy

Budget SAD

Bi
ts

 p
er

 s
ym

bo
l

Memory budget K

p=0.9

Figure 3: Redundancy for the Budget SAD as a function of
maximum reservoir size. Images are encoded as 32-bit inte-
gers (i.e., log2 |X | = 32).

(Figure 2; images from Wikipedia, 2015). Thus, while the
source emits symbols from an alphabet X of size 25650×60,
onlym of these symbols occur with non-negligible frequency.

We implemented the Budget SAD with a time-dependent
reservoir size K to match the regret bound of Theorem 2:
from a parameterR ∈ R+, we setKt = dRdlog(t+1)ee. We
trained both SAD and Budget SAD on one million symbols
generated with m = 4 and p ∈ {0.1, 0.9}. We performed
experiments with R ∈ [1.0, 2.0] (when p = 0.1) and R ∈
[0.5, 10.0] (when p = 0.9), with the results of each Budget
SAD experiment averaged across 100 trials.

To study the behaviour of our algorithm, we map each
value of R to its corresponding end-of-sequence reservoir
size and report the algorithm’s redundancy as a function of
this value. Results for both values of p are shown in Fig-
ure 3. The Budget SAD achieves equal or lower redundancy
using a small fraction of the SAD’s memory budget (0.01%
for both p = 0.1 and p = 0.9). Note that the Budget SAD
even performs slightly better than the SAD in this instance, as
it assigns a higher probability mass to unseen symbols. We
conclude that the Budget SAD has the ability to significantly
reduce memory usage.

5.2 Branch Pruning in Context Tree Weighting
Our analysis so far has focused on memoryless sources and
their models. A common method of augmenting memoryless
models is to embed them into a tree structure in order to guar-
antee low redundancy with respect to the class of k-Markov
sources. One such method, Context Tree Weighting [Willems
et al., 1995], uses the generalized distributive law [Aji and
McEliece, 2000] to efficiently perform Bayesian model aver-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700

R = 1.5

No pruning

R = 1.0

Bi
ts

 p
er

 c
ha

ra
ct

er

R = 2.0

Characters processed (millions)
 0

 20

 40

 60

 80

100

 0 100 200 300 400 500 600 700

R = 1.5

R = 1.0

M
em

or
y

us
ag

e
(%

 o
f C

TS
)

Characters processed (millions)

R = 2.0

0

Figure 4: Left. Redundancy for the Budget SAD and SAD
estimators. Right. Memory usage for the Budget SAD.

aging over tree structures.
At the core of CTW is a growing |X |-ary context tree;

each new symbol creates up to D new nodes, where D is a
depth parameter. Each node corresponds to a context (a sub-
sequence of x1:n) and maintains a statistical estimator (here,
the SAD). Here we consider a modified CTW in which each
node uses a K-distinct reservoir to store its children: remov-
ing an item from the reservoir prunes a whole subtree.

To understand the need for branch pruning, consider the
Wikipedia Clean Text data set [Mahoney, 2011], which we use
as our sequential prediction task here. This data set is com-
posed of 713M lowercase characters (a–z and whitespace;
|X | = 27). Within are 105M unique contexts of length at
most D = 9. This number grows linearly over time, making
a memory-bounded solution highly desirable. However, each
context sees, on average, two or fewer symbols; as a result,
using the Budget SAD at each node cannot significantly re-
duce memory usage. Branch pruning, on the other hand, is
relatively effective.

For our experiment we used the more efficient CTW rela-
tive, Context Tree Switching [CTS; Veness et al., 2012] and
derived our parameters from its authors’ open-source imple-
mentation. As with the synthetic experiment, we considered
values in the range R ∈ [1.0, 3.0]. For each node u, its reser-
voir size was increased as R log(tu + 1), with tu the number
of visits to this node. We set the depth parameter to D = 9
as larger values of D did not affect redundancy, and averaged
each experiment across 10 trials.

As illustrated in Figure 4, our algorithm, through the R
parameter, can smoothly trade off memory usage and redun-
dancy (with respect to an unpruned CTS). For example, for
a small redundancy (≤ 5%) we observed a 44.6% average
reduction in memory usage (R ≈ 1.76, not illustrated). Fur-
thermore, there was minimal variance between trials. While
memory usage still remains linear in n, we believe this re-
sult is particularly significant given the Zipfian behaviour of
natural language data, which in our analysis corresponds to a
large κ term.

6 Discussion
In our setting, the optimal model ρ∗µ assigns a uniform prob-
ability over the set X \ Z∗. Interestingly enough, the main
source of redundancy in the Budget SAD is the κ log2 n cost
for approximating this uniform probability. In particular for
some distributions (e.g. µ(·) ∝ 2−i for i ∈ N) our analysis

suggests an unpleasant O(n log n) redundancy — possibly
worse-than-random performance. This cost stems from our
overestimation of symbols in Z∗; it seems probable that an
alternative approach, which instead overestimates 1−µ(Z∗),
exists.

On the other hand, with well-behaved data the Budget
SAD provides significant memory savings. This is the
case, for example, when the tail of µ is approximately uni-
form. Most count-based frequency estimators [Friedman
and Singer, 1999; Teh, 2006; Veness and Hutter, 2012;
Hutter, 2013] model this behaviour by setting aside a lump
probability mass ε for all unobserved symbols; our zt term
serves a similar purpose.

Surprisingly, K-distinct reservoir sampling is unnecessary
if the source µ is truly memoryless and stationary. In fact, in
this case the first K distinct symbols in x1:n are just as good
an approximation to Z∗! The benefit of our approach is to
(partially) inoculate the budget estimator against adversarial
empirical sources; a similar role is played by the Dirichlet-
multinomial prior in estimating counts.

Orlitsky et al. [2003] proposed two methods for achieving
o(n) per-symbol redundancy on open alphabets, where new
symbols appear at a O(n) rate. As an alternative to the zt
term, in this setting it may be sufficient to accurately estimate
|At|, the size of the alphabet at time t; work on distinct value
queries suggests this is possible [Gibbons, 2001]. However,
Orlitsky et al.’s method requires that we instead estimate the
prevalence, or frequency distribution, of symbols. Whether
this can be done with bounded memory is not known to us.

7 Conclusion
In this paper we presented a novel algorithm, K-distinct
reservoir sampling, which incrementally maintains a sample
of frequently occurring symbols within a data stream. We de-
scribed how to combine K-distinct reservoir sampling with
a simple count-based estimator and derived a corresponding
redundancy bound. As our empirical results show, our al-
gorithm can significantly reduce the memory requirements
of both memoryless and tree-based estimators when dealing
with long data sequences.

8 Acknowledgements
The author wishes to thank Joel Veness for uncountably many
discussions on the topic of count-based estimation, Laurent
Orseau for providing thorough editorial comments, Alvin
Chua and Michael Bowling for helpful discussion, and finally
the anonymous reviewers for their superb feedback.

References
[Aji and McEliece, 2000] Srinivas M. Aji and Robert J.

McEliece. The generalized distributive law. IEEE Trans-
actions on Information Theory, 46(2):325–343, 2000.

[Bellemare et al., 2013] Marc G. Bellemare, Joel Veness,
and Michael Bowling. Bayesian learning of recursively
factored environments. In Proceedings of the Thirtieth In-
ternational Conference on Machine Learning, 2013.

[Cavallanti et al., 2007] Giovanni Cavallanti, Nicoló Cesa-
Bianchi, and Claudio Gentile. Tracking the best hyper-
plane with a simple budget perceptron. Machine Learning,
69(2-3):143–167, 2007.

[Charikar et al., 2004] Moses Charikar, Kevin Chen, and
Martin Farach-Colton. Finding frequent items in data
streams. Theoretical Computer Science, 312(1):3–15,
2004.

[Cleary and Witten, 1984] John G. Cleary and Ian Witten.
Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications,
32(4):396–402, 1984.

[Cover and Thomas, 1991] Thomas M. Cover and Joy A.
Thomas. Elements of information theory. John Wiley &
Sons, 1991.

[Dekel et al., 2008] Ofer Dekel, Shai Shalev-Shwartz, and
Yoram Singer. The Forgetron: A kernel-based perceptron
on a budget. SIAM Journal on Computing, 37(5):1342–
1372, 2008.

[Demaine et al., 2002] Erik D. Demaine, Alejandro López-
Ortiz, and J. Ian Munro. Frequency estimation of internet
packet streams with limited space. In Proceedings of the
Tenth Annual European Symposium on Algorithms, pages
348–360, 2002.

[Farias et al., 2010] Vivek F. Farias, Ciamac C. Moallemi,
Benjamin Van Roy, and Tsachy Weissman. Universal re-
inforcement learning. IEEE Transactions on Information
Theory, 56(5):2441–2454, 2010.

[Friedman and Singer, 1999] Nir Friedman and Yoram
Singer. Efficient Bayesian Parameter Estimation in Large
Discrete Domains. Advances in Neural Information
Processing Systems 11, 11:417, 1999.

[Gale and Church, 1990] William Gale and Kenneth W.
Church. Poor estimates of context are worse than none.
In Proceedings of the Workshop on Speech and Natural
Language, pages 283–287, 1990.

[Gibbons and Matias, 1998] Phillip B. Gibbons and Yossi
Matias. New sampling-based summary statistics for im-
proving approximate query answers. In Proceedings of the
ACM SIGMOD, volume 27, pages 331–342, 1998.

[Gibbons, 2001] Phillip B. Gibbons. Distinct sampling for
highly-accurate answers to distinct values queries and
event reports. In Proceedings of the International Con-
ference on Very Large Databases, 2001.

[Hutter, 2013] Marcus Hutter. Sparse adaptive dirichlet-
multinomial-like processes. In COLT, 2013.

[Katz, 1987] Slava M. Katz. Estimation of probabilities from
sparse data for the language model component of a speech
recognizer. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 35(3):400–401, 1987.

[Knuth, 1981] Donald E. Knuth. The Art of computer Pro-
gramming, Volume 2: Seminumerical Algorithms, 2nd
Edition. Addison-Wesley, 1981.

[Krichevsky and Trofimov, 1981] R. Krichevsky and
V. Trofimov. The performance of universal coding. IEEE
Transactions on Information Theory, 27:199–207, 1981.

[Lu and Lu, 2011] Chi-Jen Lu and Wei-Fu Lu. Making on-
line decisions with bounded memory. In Algorithmic
Learning Theory, pages 249–261, 2011.

[Mahoney, 2011] Matt Mahoney. Large text compression
benchmark, 2011. [Online; accessed 01-February-2015].

[Manku and Motwani, 2002] Gurmeet Singh Manku and Ra-
jeev Motwani. Approximate frequency counts over data
streams. In Proceedings of the 28th International Confer-
ence on Very Large Databases, pages 346–357, 2002.

[Metwally et al., 2005] Ahmed Metwally, Divyakant
Agrawal, and Amr El Abbadi. Efficient computation
of frequent and top-k elements in data streams. In
Proceedings of the International Conference on Database
Technology, pages 398–412, 2005.

[Orabona et al., 2008] Francesco Orabona, Joseph Keshet,
and Barbara Caputo. The projectron: a bounded kernel-
based perceptron. In Proceedings of the 25th international
conference on Machine learning, pages 720–727. ACM,
2008.

[Orlitsky et al., 2003] Alon Orlitsky, Narayana P. San-
thanam, and Junan Zhang. Always good turing: Asymp-
totically optimal probability estimation. In Proceedings of
the 44th Anual Symposium on Foundations of Computer
Science, 2003.

[Teh, 2006] Yee Whye Teh. A hierarchical bayesian lan-
guage model based on pitman-yor processes. In Proceed-
ings of the 21st International Conference on Computa-
tional Linguistics, pages 985–992, 2006.

[Tjalkens et al., 1993] Tj. J Tjalkens, Y.M. Shtarkov, and
F.M.J. Willems. Context tree weighting: Multi-alphabet
sources. In 14th Symposium on Information Theory in the
Benelux, pages 128–135, 1993.

[Tziortziotis et al., 2014] Nikolaos Tziortziotis, Christos
Dimitrakakis, and Konstantinos Blekas. Cover tree
bayesian reinforcement learning. The Journal of Machine
Learning Research, 15(1):2313–2335, 2014.

[Veness and Hutter, 2012] Joel Veness and Marcus Hutter.
Sparse sequential Dirichlet coding. ArXiv e-prints, 2012.

[Veness et al., 2012] Joel Veness, Kee Siong Ng, Marcus
Hutter, and Michael H. Bowling. Context tree switching.
In Data Compression Conference (DCC), pages 327–336,
2012.

[Wikipedia, 2015] Wikipedia. Campbell’s soup cans, 2015.
[Online; accessed 01-February-2015].

[Willems et al., 1995] Frans M. Willems, Yuri M. Shtarkov,
and Tjalling J. Tjalkens. The context tree weighting
method: Basic properties. IEEE Transactions on Infor-
mation Theory, 41:653–664, 1995.

