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1 Notation

Let µ be a probability distribution over an alphabet X , with Shannon entropy H(µ). For a set
S ⊆ X we write µ(S) :=

∑
x∈S µ(x). For a random variable X taking values in the discrete alphabet

X and F an event in the σ-algebra of X, we write Eµ[X;F ] := Eµ[XI[F ]]. Whenever unambiguous
we write KL(· ‖ ·) := KL1(· ‖ ·). Finally, for an integer i ∈ N we write [i] := {1, . . . , i}. We refer the
reader to the main text for the full list of terms.

Throughout, we make use of the following information-theoretic property: for any discrete
random variable X over X we have (Cover and Thomas, 1991),

KL(X ‖UX ) = log |X | −H(X). (1)

Lemma 1. Let M be the class of budget multinomial distributions. Let µ be a memoryless sta-
tionary source and K ∈ N. Then the model ρ∗µ ∈M which minimizes KL(µ ‖ ·) is

Z∗ = arg min
Z:|Z|=K

[
µ(X \ Z)KL(µX\Z ‖UX\Z)

]
θ∗(x) = µ(x) ∀x ∈ Z∗ θ∗0 = µ(X \ Z∗).

Proof. First, we fix Z and derive the optimal parameters for this Z. Second, we use these optimal
parameters to obtain Z∗. We begin by expanding the KL divergence of ρ(x) := ρ(x ; Z, θ, θ0) from
µ:

J(Z, θ, θ0) := KL(µ ‖ ρ) = E
x∼µ

[
log

µ(x)

ρ(x)

]
= E

x∼µ

[
log

µ(x)

ρ(x)
; x ∈ Z

]
+ E
x∼µ

[
log

µ(x)

ρ(x)
; x /∈ Z

]
We now define the Lagrangian

J(Z, θ, θ0, λ) := J(Z, θ, θ0) + λ

(∑
x∈X

ρ(x)− 1

)
.
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Let θ := [θ1, . . . , θK ], and fix Z := {x1, . . . , xK}. For i ∈ [K], we have

∂

∂θi
J(Z, θ, θ0, λ) =

∂

∂θi
E
x∼µ

[
log

µ(x)

ρ(x)
; x ∈ Z

]
+ λ

= −µ(xi)

ρ(xi)
+ λ.

Recall that ρ(x) = θ0
|X\Z| for x /∈ Z. We thus have

∂

∂θ0
J(Z, θ, θ0, λ) =

∂

∂θ0
E
x∼µ

[
log

µ(x)

ρ(x)
; x /∈ Z

]
+ λ

∑
x∈X

I[x/∈Z]

= −
∑
x/∈Z

µ(x)
1

θ0
+ λ|X \ Z|

= −µ(X \ Z)

θ0
+ λ|X \ Z|

Setting ∂
∂θi
J(Z, θ, θ0, λ) = 0 for i ∈ [K] ∪ {0}, we obtain

θi = λ−1µ(xi) θ0 = λ−1
µ(X \ Z)

|X \ Z|

Finally, from
∑

x∈X ρ(x) = 1 we find that λ = 1. For a fixed Z, the unique optimal parameters are
thus

θZi = µ(xi) θZ0 =
µ(X \ Z)

|X \ Z| (2)

We plug these values into the definition of J(Z, θ, θ0):

J(Z, θ, θ0) = E
x∼µ

[
log

µ(x)

ρ(x)
; x ∈ Z

]
+ E
x∼µ

[
log

µ(x)

ρ(x)
; x /∈ Z

]
= E

x∼µ

[
log

µ(x)

µ(x)
; x ∈ Z

]
+ E
x∼µ

[
log

µ(x)

θZ0
; x /∈ Z

]
= E

x∼µ

[
log

µ(x)µ(X \ Z)−1

|X \ Z|−1 ; x /∈ Z
]

= E
x∼µ

[
log

µX\Z(x)

UX\Z(x)
; x /∈ Z

]
= µ(X \ Z)KL(µX\Z ‖UX\Z).

The model in M which minimizes KL(µ ‖ ·) is thus

Z∗ = arg min
Z:|Z|=K

[
µ(X \ Z)KL(µX\Z ‖UX\Z)

]
,

with parameters given by Equation 2.

Lemma 2. Let Z∗ be the subalphabet associated with the model ρ∗µ ∈ M minimizing KL(µ ‖ ·).
Then Z∗ = H ∪ L, where H,L ⊆ X are such that
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• for all x ∈ H, y ∈ X \H, µ(x) ≥ µ(y), and

• for all x ∈ L, y ∈ X \ L, µ(x) ≤ µ(y).

Proof. From Lemma 1, we know the optimal model has subalphabet

Z∗ = arg min
Z:|Z|=K

[
µ(X \ Z)KL(µX\Z ‖UX\Z)

]
.

Let X := {x1, x2, . . . , xm} be such that µ(x1) ≥ µ(x2) ≥ · · · ≥ µ(xi) ≥ . . . µ(xm). For simplicity we
consider the case when K = 1, and show that

µ(X \ Z)KL(µX\Z ‖UX\Z)

is concave over i = 1, . . . ,m. For K = 1 and a fixed choice of xi, the above can be rewritten as

µ(X \ Z)KL(µX\Z ‖UX\Z) = (1− µ(xi))KL(µX\Z ‖UX\Z)

= (1− µ(xi))
[

log |X \ Z| −H(µX\Z)
]

= (1− µ(xi))

log |X \ Z|+
∑
x 6=xi

µ(x)

µ(X \ Z)
log

(
µ(x)

µ(X \ Z)

)
= (1− µ(xi)) log |X \ Z|+

∑
x 6=xi

µ(x) logµ(x)−
∑
x 6=xi

logµ(X \ Z)

= (1− µ(xi)) log |X \ Z| −H(µ)

− µ(xi) logµ(xi)− (1− µ(xi)) log(1− µ(xi))

= (1− µ(xi)) log |X \ Z| −H(µ) +H(µ(xi)),

where with some abuse of notation we use H(µ(xi)) to denote the entropy of a Bernoulli distribution
with parameter µ(xi). This entropy is concave in µ(xi), and summary examination shows that the
whole function is also concave in µ(xi). It must be therefore be that the minimum is achieved by
either µ(x1) or µ(xm), i.e. by removing either the least or most frequent element from X . The
case K > 1 follows by similarly relating our objective function to the entropy of a multinomial
distribution with parameters µ(xi1), . . . , µ(xim), 1− µ(X \ Z).

Lemma 3. Let M be the class of budget multinomial distributions. Let µ be a memoryless station-
ary source and K ∈ N. Let ρ∗ := ρ∗µ ∈ M be the model with parameter Z∗ minimizing KL(µ ‖ ·),
and let ρ̂ := ρ̂µ ∈M be the model defined according to

Ẑ := arg max
Z:|Z|=K

µ(Z)

with parameters as per Lemma 1. Then

KL(µ ‖ ρ̂)−KL(µ ‖ ρ∗) ≤ 1

e
+ µ(Z∗ \ Ẑ) logK ≤ 1

e
+

K

|X | logK.

Furthermore, there exists a source µ for which

KL(µ ‖ ρ̂)−KL(µ ‖ ρ∗) ≥ 1

e
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Proof. Let |X | = m and as before let X := {x1, . . . , xm} such that µ(x1) ≥ µ(x2) ≥ µ(xm). Without
loss of generality, we consider the case where Z∗ := {xm−K+1, . . . , xm}. We partition our alphabet
into three sets, A := Ẑ, C := Z∗, and B := X \{A∪B} (Figure 1) and let L := |B|+K = |X |−K.
We begin with a few properties which follow from our arrangement of X in order of decreasing

A CB

µ(x)

X

L = |B| + |A| = |B| + |C| = |B| + K

Figure 1: Probability distribution over X with symbols arranged by decreasing probability. Here
A := Ẑ, C := Z∗ and B := X \ {A ∪ C}.

probability:

ρ∗(x) =
µ(A) + µ(B)

L
∀x ∈ A ∪B ρ̂(x) =

µ(B) + µ(C)

L
∀x ∈ B ∪ C

ρ̂(x) ≥ ρ∗(x) ∀x ∈ A µ(B) + µ(C)

L
≥ µ(C)

K

Observe that both models assign uniform probabilities over B, but may differ significantly over
A and C. We consider the difference in their KL divergence from µ:

KL(µ ‖ ρ̂)−KL(µ ‖ ρ∗) =
∑

S∈{A,B,C}

E
x∼µ

[
log

ρ∗(x)

ρ̂(x)
; x ∈ S

]
(3)

Since ρ̂(x) ≥ ρ∗(x) for all x ∈ A, we know only the expectations for sets B and C may be positive
in Equation 3. We first consider the B term:

E
x∼µ

[
log

ρ∗(x)

ρ̂(x)
; x ∈ B

]
= E

x∼µ

[
log

µ(A) + µ(B)

µ(B) + µ(C)
; x ∈ B

]
≤ E

x∼µ

[
log

1

µ(B)
; x ∈ B

]
≤ −µ(B) log(µ(B))

≤ 1

e
,
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where the last inequality follows from finding the maximum of −x log x on [0, 1]. Turning our
attention to the C term, we have

E
x∼µ

[
log

ρ∗(x)

ρ̂(x)
; x ∈ C

]
= E

x∼µ

[
log

µ(x)

(µ(B) + µ(C))/L
; x ∈ C

]
≤ E

x∼µ

[
log

µ(x)

µ(C)/K
; x ∈ C

]
≤ µ(C) E

x∼µC

[
log

µC(x)

1/K

]
= µ(C)KL(µC ‖UC)

≤ µ(C) logK,

where for the second inequality we used µC(x) = µ(x)/µ(C) on x ∈ C, and the last line follows
from Equation 1. Since C contains the K symbols with smallest probabilities, we know by the
pigeonhole principle that µ(C) ≤ K

|X | ; noting that in the general case C = Z∗ \ Ẑ, the upper bound
now follows by combining the terms.

To prove the lower bound, we simply construct a source µ for which µ(x) = c for all x ∈ A∪B,
and µ(x) = ε < c for x ∈ C. In this case, KL(µ ‖ ρ∗) = 0 since ρ∗ correctly assigns a uniform
probability to all symbol in A ∪ B; the 1

e lower bound follows by maximizing −µ(B) logµ(B) as
before.

Theorem 1. When Algorithm 1 (K-distinct reservoir sampling) terminates, its summary S is the
K-concise summary of a permutation x̃1:n sampled uniformly at random from P(x1:n).

Proof. Let (rt : t ∈ N) be the sequence of random integers drawn by Algorithm 1, and (wt1:t : t ∈ N)
the sequence of permutations of x1:n induced by (rt), with wt1:t := wt1 . . . w

t
t ∈ X t. Note that this

sequence of permutations does not depend on the rest of Algorithm 1.
Our proof goes by induction. At time t = 1 we insert x1 with dt,1 = 1 = τt(x1); clearly

S1 =
〈
(x1, 1)

〉
is the 1-concise summary of the unique permutation w1

1:1 = x1. Now assume that

St−1 :=
〈
(yt−1,i, dt−1,i)

〉K′
i=1

is the K-concise summary of wt−11:t−1, and without loss of generality
assume K ′ = K. For clarity of exposition let r := rt, I := It−1(xt), and J := Jt−1(r); further, we
write Dt,i :=

∑i−1
j=1 dt,j (see main text for definitions).

Observe that r is the position of xt in wt1:t and in particular wt1:t = wt−11:r xtw
t−1
r+1:t−1. By assump-

tion, for all i ≤ K we haveDt−1,i = τ(yi, w
t−1
1:t−1)−1, and furthermore yt−1 := y(St−1) = φK(wt−11:t−1).

We need to show that Dt,i = τ(yi, w
t
1:t)− 1 for all i ≤ K and yt = φK(wt1:t).

Consider first the case when xt occurs within w1:r, i.e. I < J . Then the first occurrence of xt,
τ(xt, w

t
1:t), is the same as τ(xt, w

t−1
1:t−1). More generally, for all i < J we have τ(yt−1,i, w

t
1:t) =

τ(yt−1,i, w
t−1
1:t−1), while for i ≥ J we have τ(yt−1,i, w

t
1:t) = τ(yt−1,i, w

t−1
1:t−1) + 1. Furthermore,

φK(wt1:t) = φK(wt−11:t−1). In this case we set dt,J−1 ← dt−1,J−1 + 1, such that for all i ≥ J we

have Dt,i =
∑i−1

j=1 dt,j = Dt−1,i = τ(yt−1,i, w
t
1:t)− 1, as desired.

If xt does not occur within w1:r, we must insert it within our K-concise summary, provided
that xt ∈ φK(w1:rxt), i.e. fewer than K distinct symbols occur in w1:r. Again, for all i < J , we
have τ(yt−1,i, w

t
1:t) = τ(yt−1,i, w

t−1
1:t−1), while for i > J we have τ(yt−1,i, w

t
1:t) = τ(yt−1,i, w

t−1
1:t−1) + 1.

However, the time of first occurrence of xt now naturally becomes r, and φK(wt1:t) 6= φK(wt−11:t−1).

In this case St is updated from St−1 as follows. If xt occurs in φK(wt−11:t−1) (at position I), we first
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remove it from the reservoir and set dt,I−1 = dt−1,I−1 + dt−1,I . We then insert xt at position J
with count Dt−1,J − r + 1, as per Algorithm 1; in particular, all elements at positions i ≥ J are
moved forward one position, i.e. yt,i+1 = yt−1,i. Following the insertion, the Dt,· terms become

Dt,J =

J−1∑
j=1

dt,j =

J−2∑
j=1

dt−1,j + r −Dt−1,J−1 = r = τ(xt, w
t
1:t)− 1,

Dt,i =

i−1∑
j=1

dt,j = Dt,J +Dt−1,J − r + 1 +

i−1∑
j=J

dt−1,j = Dt−1,i + 1 = τ(yt,i, w
t
1:t)− 1 ∀i > J,

as desired. Finally, we remove the Kth + 1 symbol. For y1 . . . yK := yt−1 = φK(wt−11:t−1), then

φK(wt1:t) = y1 . . . yJ−1xtyJ . . . yK−1,

which matches the contents of St. Thus St contains the K-concise summary for the permutation
wt1:t, and the result follows by induction.

Lemma 4. Let (µt : t ∈ N) be a sequence of probability distributions over X together forming a
memoryless coding distribution µ(x1:n) =

∏n
t=1 µt(xt). Let x1:n be a random string drawn from µ,

and x̃1:n a permutation of x1:n drawn uniformly at random from P(x1:n). For any x ∈ X , we have

Pr{x /∈ φK(x̃1:n)} ≤ (1−min
j≤n

µj(x))K

Proof. Consider the permutation π on [n] mapping x1:n to x̃1:n such that x̃i = xπ(i). If the random
elements of φK(x̃1:n) are denoted Y1 . . . YK , then

Pr{x /∈ φK(x̃1:n)} =
∑

y1,...,yK 6=x
Pr{Y1 = y1, . . . , YK = yK}

=
∑

y1,...,yK−1 6=x
Pr{Y1, . . . , YK−1}

∑
yK 6=x

Pr{YK = yk |Y1, . . . , YK−1},

where in the second line Yi = yi is implied for conciseness. Now,∑
yK 6=x

Pr{YK = yK |Y1, . . . , YK−1} = 1− Pr{YK = x |Y1, . . . YK−1}

In general, the distribution over YK depends on the random time τK at which the Kth distinct
symbol first occurs in x̃1:n. For example, the first element x̃1 is sampled from µπ(1), the second
from µπ(τ2), etc. However, given τ1 . . . τK−1, we can lower bound Pr{YK = x |Y1, . . . , YK−1} as

Pr{YK = x |Y1, . . . YK−1} ≥
minj≤n µj(x)

1−∑i
j=1 µπ(τj)(yj)

≤ min
j≤n

µj(x).

Since the resulting probability is independent of τ1 . . . τK−1, we can write

Pr{x /∈ φK(x̃1:n)} =
∑

y1,...,yK−1 6=x
Pr{Y1, . . . , YK−1} (1− Pr{YK = x |Y1, . . . , YK−1})

≤ (1−min
j≤n

µj(x))
∑

y1,...,yK−1 6=x
Pr{Y1, . . . , YK−1}
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and by induction on K
Pr{x /∈ φK(x̃1:n)} ≤ (1−min

j≤n
µj(x))K .

Since this bound does not depend on π, the desired result follows.

Lemma 5 (Lemma 3 in the main text). Let µ be a memoryless stationary source, let B ⊆ X , δ ∈
(0, 1), and let υ(B, µ) := minx∈B µ(x). Let Y := (Yt : t ∈ N) be the sequence of alphabets Yt :=
Y(St) ⊆ X induced by running Algorithm 1 on a string x1:n ∼ µ. Further let Gn(x), Gn(B) be the
events defined as

Gn(x) := {∀t ≥ τ(x, x1:n), x ∈ Yt} Gn(B) :=
⋂
x∈B

Gn(x).

Then for K ≥ υ(B, µ)−1 log(|B|nδ−1), we have

Pr {Gn(B)} ≥ 1− δ.

Corollary 1. Under the same conditions as Lemma 5, with probability 1 − δ the Budget SAD
contains the correct counts for all x ∈ B, i.e. cn,In(x) = Nn(x).

Proof (of Lemma 5). Let At := {x ∈ X : Nt(x) > 0}. By definition, Lemma 5 is trivially true
whenever τn(x) = n+ 1. For x such that τn(x) ≤ n, we begin with

Gn(x) =
n⋂

t=τn(x)

(x ∈ Yt) =
n⋂
t=1

(x /∈ At ∪ x ∈ Yt) .

Using De Morgan’s law, we rewrite the above as

¬Gn(x) =

n⋃
t=1

(x ∈ At ∩ x /∈ Yt) ⊆
n⋃
t=1

(x /∈ Yt)

Recall that Yt := Y(St) is the alphabet corresponding to our K-distinct sample of x1:t. By Lemma 4
and the definition of υ(B, µ) we have, for any x ∈ B,

Pr{x /∈ Yt} ≤ (1− µ(x))K

≤ (1− υ(B, µ))K

≤ e−υ(B,µ)K

≤ e− log
|B|n
δ = (|B|n)−1 δ,

where we used the fact that 0 ≤ υ(B, µ) ≤ 1 (third line). From a union bound over B and
t = 1, . . . , n, we obtain

Pr{¬Gn(B)} ≤
∑
x∈B

n∑
t=1

Pr{x /∈ Yt} ≤ δ

It follows that Gn(B) must occur with probability at least 1− δ.
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We now develop three lemmas needed to prove an expected redundancy bound for the Bud-
get SAD. Two random sequences arise in our analysis of this expected redundancy: the se-
quence of symbols x1:n ∼ µ and the sequence of random insertions r1:n, sampled according to
rt ∼ U ({0, . . . , t − 1}). These two sequences together induce a random sequence of K-distinct
summaries, (St : t ∈ N), with St = [(yt,i, dt,i, ct,i) ∈ X × N+ × N+ : i ∈ [K]], which itself induces a
sequence (Dt,i : t ∈ N, i ∈ [K]) with Dt,i :=

∑i−1
j=1 dt,j .

Our redundancy bound depends on an augmented version of Z∗ which contains K > |Z∗|
elements. This augmented set Zaug is defined as

Zaug := arg max
B⊆X

µ(B).

Since K > |Z∗| and Z∗ is composed of the most frequent symbols in µ, it follows that Z∗ ⊆ Zaug.
We begin by bounding the expected “length” of our K-distinct summary, Dt,K+1, which we then
use to bound E [zt], the expected number of discards. This latter quantity plays a critical role in
the expected redundancy of the Budget SAD.

Lemma 6. For any t ∈ N, we have

E
x1:n,r1:n

[Dt,K+1] ≤ min
{
t− 1,K(1− µ(Zaug))−1 − 1

}
Proof. As previously, let x̃1:n ∼ U (P(x1:n)) denote the random permutation of x1:n induced by
r1:n, and let y := y1 . . . yK := φK(x̃1:n). Further let G (p) be the geometric distribution with mean
p−1. Recall that Dt,K+1 is the first occurrence of the first x /∈ y in x̃1:n. Since x̃1:n is a uniformly
random permutation of x1:n, itself drawn from a memoryless source, we can use the same argument
as in Lemma 4 to view x̃1:n as drawn from a random process which outputs x̃1, x̃2, . . . according to
µ. The times of first occurrence of symbols in y are thus

τt(y1) = 1

τt(y2) ∼ 1 + G (1− µ(y1)) = τt(y1)

...

τt(yi) ∼ τt(yi−1) + G

1−
i−1∑
j=1

µ(yj)

 ,

approximately (i.e. when t is large enough); observe that this approximation is an upper bound on
τt(yi), since at most t symbols can be observed. Since Dt,i = τn(yi)− 1 for i ≤ K, we deduce that

Dt,K+1 ∼
K∑
i=1

G

1−
i−1∑
j=1

µ(yj)

− 1, and

E[Dt,K+1] ≤ KE

G

1−
K∑
j=1

µ(yj)

− 1

≤ K(1− µ(Zaug))−1 − 1,

as required.
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Of course, since Dt,K+1 < t, this upper bound is trivial for distributions such as the problematic
µ(·) ∝ 2i described in Section 6 of the main text.

Lemma 7. Let U (·) denote the discrete uniform distribution and let P (·) be an arbitrary distri-
bution over N. For t ∈ N+, let

θ ∼ P (·) r ∼ U ({1, . . . , t}).

Then
Pr{r ≥ θ} ≥ Pr{r ≥ E θ}.

Proof.

Pr{r ≥ θ} =

∞∑
j=0

Pr{θ = j}
t∑
i=1

Pr{r = i}I[i≥j]

=
∞∑
j=1

Pr{θ = j} t− j + 1

t
I[j≤t] + Pr{θ = 0}

=
1

t

∞∑
j=1

Pr{θ = j}
[
(t− j + 1)I[j≤t] + tI[j>t] − tI[j>t]

]
+ Pr{θ = 0}

=
∞∑
j=0

Pr{θ = j} − 1

t

∞∑
j=1

Pr{θ = j}
[
(j − 1)I[j≤t] + tI[j>t]

]
≥ 1− E θ

t
,

But then

Pr{r ≥ E θ} = 1− dE θe
t
≤ 1− E θ

t
,

and the result follows.

Lemma 8. Let zt be defined as in Algorithm 2 (Budget SAD), let κ := K(1 − µ(Zaug))−1, and
assume that Gn(Z∗) occurs (Lemma 5). Then

(1− µ(Z∗)) (t− κ log t) ≤ E [zt] ≤ (1− µ(Z∗))t

0 ≤ E [zt] .

Proof. We begin by writing zt as a sum of indicator functions:

zt =

t∑
i=1

I[xi is discarded]

=

t∑
i=1

I[xi /∈Z∗,ri>Di,K+1] (4)

Observe that {xi /∈ Z∗} is independent from {ri > Di,K+1}. Using the fact that µ is memoryless,
we further have

E [zt] = (1− µ(Z∗))
t∑
i=1

Pr {ri > Di,K+1} ,

9



from which we immediately infer the upper bound. Then, since ri ∼ U ({0, . . . , i− 1}), we appeal
to Lemmas 6 and 7 to write

E [zt] ≥ (1− µ(Z∗))
t∑
i=1

Pr {ri > E [Di,K+1]}

= (1− µ(Z∗))
t∑
i=1

(
1− E [Di,K+1] + 1

i

)

≥ (1− µ(Z∗))
t∑
i=1

(
1− K(1− µ(Zaug))−1

i

)
≥ (1− µ(Z∗))

(
t−

(
K(1− µ(Zaug))−1

)
log t

)
= (1− µ(Z∗)) (t− κ log t) ,

yielding the lower bound, as desired.

Theorem 2. Let δ = o (log |X |+ n log n) and K ≥ υ(Z∗, µ)−1 log(|Z∗|nδ−1). Let Zaug ⊆ X of
size K maximizing µ(·), and let κ := K(1 − µ(Zaug))−1. The expected redundancy of the Budget
SAD ρb with respect to the optimal ρ∗µ is bounded as

E
[
Fn(ρb, ρ∗µ)

]
≤ µ(Z∗) |Z∗|−12 log n+ (1− µ(Z∗))κ log2 n+ O(κ log(κn) log log n).

Proof. Let ρbt (·) := ρb(· ‖x<t), Gn := Gn(Z∗), γt := γ(t,Yt), and let At := {x ∈ X : Nt(x) > 0} be
the true observed alphabet. Recall that for x ∈ Yt,

ρbt (x) ∝ Ñt(x) = max
{
N̂t(x), γ̂twt(x)

}
,

and also ∑
x∈X

ρbt (x) =
∑
x∈Yt

Ñt(x) + γ̂twt(x).

In what follows we assume without loss of generality that this sum is equal to∑
x∈Yt

N̂t(x) + γ̂twt(x) = t+ γ(t,Yt),

noting that even when this assumption does not hold the excess redundancy (under the other
conditions of the theorem) can be shown to be negligible. We begin by expanding the definition of
expected regret:

E
x1:n,r1:n

[
Fn(ρb, ρ∗µ)

]
= E

x1:n,r1:n

[
− log

ρb(x1:n)

ρ∗µ(x1:n)

]
= E

x1:n,r1:n

[
−

n∑
t=1

log
ρbt (xt)

ρ∗µ(xt)

]

=

n∑
t=1

E
x1:n,r1:n

[
− log

ρbt (xt)

ρ∗µ(xt)

]

=

n∑
t=1

E
x1:t,r1:t

[
− log

ρbt (xt)

ρ∗µ(xt)

]
. (5)
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For each time t ∈ [n] we consider three disjoint events: 1) {xt ∈ Z∗} ∩ Gn, 2) {xt ∈ Z∗} ∩ ¬Gn,
and 3) xt /∈ Z∗. We write

E
x1:t,r1:t

[
− log

ρbt (xt)

ρ∗µ(xt)

]
= E

x1:t,r1:t

[
− log

ρbt (xt)

ρ∗µ(xt)

(
I[xt∈Z∗∩Gn] + I[xt∈Z∗∩¬Gn] + I[xt /∈Z∗]

)]
We now bound each term individually.

Case 1. {xt ∈ Z∗} ∩ Gn. By definition of Gn, we have that ct,I(x) = Nt(x) for all x ∈ Z∗.
Furthermore, (t− zt) ≥ 1. The Budget SAD predicts xt with probability

ρbt (xt) =
Ñt(x)∑

x∈Yt Ñt(x) + γ̂t

≥ N̂t(x)

t+ γ(t,Yt)

≥ Nt(x)

t+ γ(t,At)
= ρsad(xt |x<t).

Furthermore, for any x ∈ Z∗, ρ∗µ(x) = µ(x). Therefore, if xt ∈ Z∗ and Gn(Z∗), then

− log
ρbt (xt)

ρ∗µ(xt)
≤ − log

ρsad(xt |x<t)
µ(xt)

.

In other words, given Gn, the Budget SAD predicts better on xt ∈ Z∗ than the SAD.
Case 2. {xt ∈ Z∗} ∩ ¬Gn. Recall that, by definition, we have

ρbt (xt) ≥
wt(xt)(zt + γt)

t+ γt
. (6)

We thus conservatively bound the loss of the Budget SAD as

E
x1:t,r1:t

[
− log

ρbt (xt)

ρ∗µ(xt)

∣∣∣xt ∈ Z∗,¬Gn] ≤ − log
wt(xt)(zt + γt)

t+ γt
+ logµ(xt)

≤ log |X \ Yt|+ log
t+ γt
zt + γt

≤ log |X |+ log
t+ γt
γt

≤ log |X |+ log t− log γt + 1

≤ log |X |+ log t+ log log t+ 1, (7)

where we assumed that t ≥ γt without loss of generality.
Case 3. xt /∈ Z∗.
Let

f(t) := max {t− κ log t, 0} .
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From Equation 6 and Lemma 8, we have

E
x1:t,r1:t

[
− log

ρbt (xt)

ρ∗µ(xt)

∣∣∣xt /∈ Z∗] ≤ − log

[
wt(xt)(zt + γt)

t+ γt

|X \ Z∗|
1− µ(Z∗)

]
≤ − log

[ |X \ Z∗|
|X \ Yt|

(1− µ(Z∗))f(t) + γt
t+ γt

(1− µ(Z∗))−1
]

≤ − log

[
max

{
(1− µ(Z∗))f(t)

t
,

γt
t+ γt

}
(1− µ(Z∗))−1

]
≤ min

{
− log

[
f(t)

t

]
,− log

[
(1− µ(Z∗))−1γt

t+ γt

]}
≤ min

{
− log

[
f(t)

t

]
, O(log t)

}
. (8)

We now sum over all time steps. For the event {xt ∈ Z} ∩Gn, we use the SAD estimation bound
from Hutter (2013; see also the main document):

n∑
t=1

E
x1:t,r1:t

[
− log

ρbt (xt)

ρ∗µ(xt)

∣∣∣xt ∈ Z, Gn] ≤ |Z| − 1

2
log n+O (log log n) . (9)

Combining T := dκ log ne with Equation 8 yields

n∑
t=1

E
x1:t,r1:t

[
− log

ρbt (xt)

ρ∗µ(xt)

∣∣∣xt /∈ Z∗] ≤ O(T log T )−
n∑

t=T+1

log

[
t− κ log t

t

]

≤ O(T log T ) +
n∑

t=T+1

κ log t

t− κ log t

≤ O(T log T ) + κ log2 n (10)

Combining Equations 7, 9, and 10, we write

E
x1:n,r1:n

[
Fn(ρb, ρ∗µ)

]
≤ Pr{xt ∈ Z∗ ∩ ¬Gn} (n log |X |+ 2n log n)

+ Pr{xt ∈ Z∗ ∩Gn}
( |Z∗| − 1

2
log n+O (log log n)

)
+ Pr{xt /∈ Z∗}

(
O(T log T ) + κ log2 n

)
= δµ(Z∗) (n log |X |+ 2n log n)

+ (1− δ)µ(Z∗)
( |Z∗| − 1

2
log n+O(log log n)

)
+ (1− µ(Z∗))(κ log2 n+O(T log T )), (11)

and taking δ = o(n(log n+ log |X |)) we have

E
x1:n,r1:n

[
Fn(ρb, ρ∗µ)

]
≤ µ(Z∗) |Z

∗| − 1

2
log n+ (1− µ(Z∗))κ log2 n+O(κ log(κn) log log n)

since T = O(κ log n).
As a final remark, note that we can alternatively bound the left hand side of Equation 10 by

O(n log n), and therefore also bound the whole loss by O(n log n).
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