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Abstract
Context Tree Weighting is a powerful proba-
bilistic sequence prediction technique that effi-
ciently performs Bayesian model averaging over
the class of all prediction suffix trees of bounded
depth. In this paper we show how to generalize
this technique to the class of K-skip prediction
suffix trees. Contrary to regular prediction suffix
trees,K-skip prediction suffix trees are permitted
to ignore up toK contiguous portions of the con-
text. This allows for significant improvements in
predictive accuracy when irrelevant variables are
present, a case which often occurs within record-
aligned data and images. We provide a regret-
based analysis of our approach, and empirically
evaluate it on the Calgary corpus and a set of
Atari 2600 screen prediction tasks.

1. Introduction
The sequential prediction setting, in which an unknown en-
vironment generates a stream of observations which an al-
gorithm must probabilistically predict, is highly relevant to
a number of machine learning problems such as statistical
language modelling, data compression, and model-based
reinforcement learning. A powerful algorithm for this
setting is Context Tree Weighting (CTW, Willems et al.,
1995), which efficiently performs Bayesian model averag-
ing over a class of prediction suffix trees (Ron et al., 1996).
In a compression setting, Context Tree Weighting is known
to be an asymptotically optimal coding distribution for D-
Markov sources.

A significant practical limitation of CTW stems from the
fact that model averaging is only performed over predic-
tion suffix trees whose ordering of context variables is
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fixed in advance. As we discuss in Section 3, reorder-
ing these variables can lead to significant performance im-
provements given limited data. This idea was leveraged
by the class III algorithm of Willems et al. (1996), which
performs Bayesian model averaging over the collection of
prediction suffix trees defined over all possible fixed vari-
able orderings. Unfortunately, the O(2D) computational
requirements of the class III algorithm prohibit its use in
most practical applications.

Our main contribution is the Skip Context Tree Switching
(SkipCTS) algorithm, a polynomial-time compromise be-
tween the linear-time CTW and the exponential-time class
III algorithm. We introduce a family of nested model
classes, the Skip Context Tree classes, which form the ba-
sis of our approach. The Kth order member of this family
corresponds to prediction suffix trees which may skip up
to K runs of contiguous variables. The usual model class
associated with CTW is a special case, and corresponds to
K = 0. In many cases of interest, SkipCTS’s O(D2K+1)
running time is practical and provides significant perfor-
mance gains compared to Context Tree Weighting.

SkipCTS is best suited to sequential prediction problems
where a good fixed variable ordering is unknown a priori.
As a simple example, consider the record aligned data de-
picted by Figure 1. SkipCTS with K = 1 can improve on
the CTW ordering by skipping the five most recent symbols
and directly learning the lexicographical relation.

While Context Tree Weighting has traditionally been used
as a data compression algorithm, it has proven useful in
a diverse range of sequential prediction settings. For ex-
ample, Veness et al. (2011) proposed an extension (FAC-
CTW) for Bayesian, model-based reinforcement learning
in structured, partially observable domains. Bellemare
et al. (2013b) used FAC-CTW as a base model in their
Quad-Tree Factorization algorithm, which they applied to
the problem of predicting high-dimensional video game
screen images. Our empirical results on the same video
game domains (Section 4.2) suggest that SkipCTS is par-



Skip Context Tree Switching

T TB RE E

A G A I N !

A L W A Y S

A M A Z E D

B E C O M E

B E H O L D

A F R A I D

Figure 1. A sequence of lexicographically sorted fixed-length
strings, which is particularly well-modelled by SkipCTS.

ticularly beneficial in this more complex prediction setting.

2. Background
We consider the problem of probabilistically predicting the
output of an unknown sequential data generating source.
Given a finite alphabet X , we write x1:n := x1x2 . . . xn ∈
Xn to denote a string of length n, xy to denote the concate-
nation of two strings x and y, and xi to denote the concate-
nation of i copies of x. We further denote x<n := x1:n−1

and the empty string by ε. Given an arbitrary finite length
string y, we denote its length by |y|. The space of proba-
bility distributions over a finite alphabet X is denoted by
P(X ). A sequential probabilistic model ρ is defined by a
sequence of probability mass functions {ρi ∈P(X i)}i∈N
that satisfy, for any n ∈ N, for any string x1:n ∈ Xn,
the constraint

∑
xn∈X ρn(x1:n) = ρn−1(x<n). Since the

subscript to ρn is always clear from its argument, we hence-
forth write ρ(x1:n) for the probability assigned to x1:n by ρ.
We use ρ(xn |x<n) to denote the probability of xn condi-
tional on x<n, defined as ρ(xn |x<n) := ρ(x1:n)/ρ(x<n)
provided ρ(x<n) > 0, from which the chain rule ρ(x1:n) =∏n
i=1 ρ(xi |x<i) follows.

We assess the quality of a model’s predictions
through its cumulative, instantaneous logarithmic loss∑n
i=1− log ρ(xi |x<i) = − log ρ(x1:n). Given a set of

modelsM, we define the regret of ρ with respect toM as

Rn(ρ,M) := − log ρ(x1:n)− min
ν∈M

− log v(x1:n).

Our notion of regret corresponds to the excess total loss
suffered from using ρ in place of the best model in
M. In our later analysis, we will show that the re-
gret of our technique grows sublinearly and therefore that
limn→∞Rn(ρ,M)/n = 0. In other words, the average
instantaneous excess loss of our technique with respect to
the best model inM asymptotically vanishes.

2.1. Bayesian Mixture Models

One way to construct a model with guaranteed low regret
with respect to some model class M is to use a Bayesian
mixture model

ξMIX(x1:n) :=
∑
ρ∈M

wρ ρ(x1:n),

where wρ > 0 are prior weights satisfying
∑
ρ∈M wρ = 1.

It can readily be shown that, for any ρ ∈M, we have

Rn(ξMIX, {ρ}) ≤ − logwρ,

which implies that the regret of ξMIX(x1:n) with respect to
M is bounded uniformly by a constant that depends only
on the prior weight assigned to the best model inM. For
example, the Context Tree Weighting approach of Willems
et al. (1995) applies this principle recursively to efficiently
construct a mixture model over a doubly-exponential class
of tree models.

A more refined nonparametric Bayesian approach to mix-
ing is also possible. Given a model class M, the switch-
ing method (Koolen & de Rooij, 2013) efficiently main-
tains a mixture model ξSWITCH over all sequences of mod-
els in M. We review here a restricted application of this
technique based on the work of Veness et al. (2012) and
Herbster & Warmuth (1998). More formally, given an
indexed set of models {ρ1, ρ2, . . . , ρk} and an index se-
quence i1:n ∈ {1, 2, . . . , k}n let

ρi1:n(x1:n) :=

n∏
t=1

ρit(xt |x<t)

be a model which predicts at each time step t according to
the model with index it. The switching technique implic-
itly computes a Bayesian mixture over the exponentially
many possible index sequences. This mixture is efficiently
computed in O(k) per step by using

ξSWITCH(x1:n) =
∑
ρ∈M

wρ,n−1ρ(xn |x<n)

where, for t ∈ 1 . . . n, we have that

wρ,t :=
t

t+ 1
wρ,t−1ρ(xi |x<t) +

1

t+ 1

∑
ν∈M\{ρ}

wν,t−1 ν(xi |x<t) (1)

and in the base case wρ,0 := 1/k for each ρ ∈ M. It can
be shown (Veness et al., 2012) that for any ρi1:n we have

Rn(ξSWITCH, {ρi1:n}) ≤ [m(i1:n) + 1] (log k + log n)

where m(i1:n) :=
∑n
t=2Jit−1 6= itK counts the number of

times the index sequence switches models. In particular, if
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Figure 2. A prediction suffix tree.

a single model performs best throughout, ξSWITCH only in-
curs an additional log n cost compared to a Bayesian mix-
ture model using a uniform prior. The switching method
is a key component of the Context Tree Switching algo-
rithm, which we review in Section 2.3, as well as our new
SkipCTS algorithm. In practice, especially when the mod-
els inM are both adaptive and of varying complexity, the
ability to rapidly switch between models often leads to an
empirical performance improvement (Erven et al., 2007).
A more comprehensive overview of switching strategies
can be found in the work of Koolen & de Rooij (2013).

2.2. Prediction Suffix Trees

A Prediction Suffix Tree (Ron et al., 1996; Figure 2) is a
type of variable order Markov model. Informally, a pre-
diction suffix tree combines a collection of models using
a data-partitioning tree, whose purpose is to select which
particular model to use at each time step.

Given finite strings c := c1 . . . cm ∈ Xm and x1:n :=
x1 . . . xn ∈ Xn, we say that c is a suffix of x1:n if xn−i =
cm−i for all i ∈ {0, . . . ,m − 1}, and that c is the context
of x1:n if it is a suffix of x<n. We also write Tc(x1:n) :=
{i ∈ N : c is a suffix of x<i, 1 ≤ i ≤ n} to denote the
set of time indices occurring in context c, and denote by
xc1:n := 〈xi : i ∈ Tc(x1:n)〉 the subsequence of x1:n that
matches context c. Furthermore, given an alphabet X and
an upper bound on the maximum Markov order D ∈ N, let
X̄ :=

⋃D
i=0 X i, with X 0 := {ε}. A set S ⊆ X̄ is called

a proper suffix set over X̄ if for any finite string x there
is exactly one c ∈ S such that c is a suffix of x. We also
write S(x) to denote the matching context c ∈ S of a string
x. The key property of S(·) is that given x1:n, it defines a
partition of the time indices {1, . . . , n} in the sense that the
collection of sets {Tc(x1:n)}c∈S is mutually exclusive and
exhaustive.

A prediction suffix tree is a tuple (S,Θ) where S is a proper
suffix set over X̄ and Θ := {θc}c∈S is a set of sequen-
tial probabilistic models, with each model being associated
with a particular context in S. If ct = S(x<t) is the context
in S corresponding to x<t, then the tth symbol is predicted

⇢(xc
1:n)

⇠c(x1:n)

⇠0c(x1:n) ⇠1c(x1:n)

Figure 3. The Context Tree Switching recursive operation. For
every context c we construct a model which switches between a
base estimator ρ and a recursively defined split estimator.

as θct(xt |x
ct
<t). Since S is a proper suffix set, this gives

the sequential probabilistic model

ψS,Θ(x1:n) :=
∏
c∈S

∏
t∈Tc(x1:n)

θc(xt |xc<t) =
∏
c∈S

θc(x
c
1:n).

2.3. Context Tree Switching

Context Tree Switching (CTS, Veness et al., 2012) is a re-
cent extension of Context Tree Weighting (CTW, Willems
et al., 1995) that retains the strong theoretical properties
of CTW but performs better in practice. Let X := {0, 1}
be the binary alphabet, D ∈ N be arbitrary but fixed, and
let CD be the collection of all binary prediction suffix trees
(S,Θ) of depth less than or equal to D. Let ξCTS(x1:n)
denote the probability assigned to x1:n by CTS. The regret
Rn(ξCTS, CD) of CTS with respect to CD is upper bounded
by

ΓD(S) + (∆(S) + 1) log n+ |S|γ
(
n
|S|
)
, (2)

where ΓD(S) := |S| − 1 + |{c : c ∈ S, |c| 6= D}| is the
description length of S, ∆(S) := maxc∈S |c|, and

γ(z) :=

{
z if 0 ≤ z < 1
1
2 log2(z) + 1 if z ≥ 1.

Notice that the bound makes explicit an Occam bias to-
wards smaller prediction suffix trees. The last summand in
Equation 2 arises from having to learn the parameters of
|S| unknown Bernoulli distributions. This, combined with
the fact that ΓD(S) = O(|S|), causes CTS to perform well
whenever a small prediction suffix tree is sufficient to de-
scribe the data.

Algorithm. CTS is best understood as a recursive appli-
cation of the switching technique described in Section 2.1.
As depicted in Figure 3, for each context c ∈ X̄ we define a
switching model between two components: a base estima-
tor ρ which predicts the substring xc1:n and a split estima-
tor which subdivides c into 0c and 1c and predicts xc1:n by
querying the corresponding switching models for the fur-
ther partitioned data. The latter operation is well-defined
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by the partitioning property of proper suffix sets: xn be-
longs to either x0c

1:n or x1c
1:n but not both. The algorithm

then assigns a probability to x1:n ∈ Xn using its top-level
switching model, i.e. ξCTS(x1:n) := ξε(x1:n).

The algorithmic core of CTS is a context tree data struc-
ture: a perfect binary tree of depth D whose nodes cor-
respond to all possible strings in X̄ . Each node c ∈ X̄
stores a base estimator ρc as well as the data-dependent
quantities ξc, αc, and βc. Informally, αc(x<t) and βc(x<t)
correspond to wρ,t−1 in Equation 1, while ξc corresponds
to ξSWITCH(x1:t). CTS incrementally maintains these quan-
tities as follows. Given a new symbol xt and its associ-
ated history x<t, CTS updates the D + 1 nodes along the
path ε, xt−1, xt−2:t−1, . . . , xt−D:t−1; all other nodes are
left unchanged. CTS performs a post-order traversal along
this path, first updating each node’s base estimator and the
other quantities as follows. At the leaf c = xt−D:t−1, CTS
sets αc(x1:t) ← αc(x<t)ρc(xt |xc<t) and then ξc(x1:t) ←
αc(x1:t). At the internal nodes, the following updates oc-
cur:

ξc(x1:t) ← αc(x<t)ρc(xt |xc<t) + βc(x<t)zc,t

αc(x1:t) ← 1

t+ 1
ξc(x1:t) +

t− 1

t+ 1
αc(x<t)ρc(xt |xc<t)

βc(x1:t) ← 1

t+ 1
ξc(x1:t) +

t− 1

t+ 1
βc(x<t)zc,t

where zc,t := ξx′c(x1:t)/ξx′c(x<t) is the probability as-
signed to xt by the recursively-defined split estimator, with
x′ := xt−|c|−1. Every node c is initialized with αc(ε) =

βc(ε) = 1
2 , except for leaf nodes where we set αc(ε) = 1

and βc(ε) = 0 to reflect the fact that no further splitting
occurs at depth D.

2.4. Choice of Base Estimator

If the alphabet is binary, a natural choice of base model
is the KT estimator (Krichevsky & Trofimov, 1981). This
estimator probabilistically predicts each symbol according
to a Beta-Binomial model, using a Beta( 1

2 ,
1
2 ) prior over

the unknown parameter. The regret of the KT estimator
with respect to any Bernoulli process is known to be at
most 1

2 log n + 1. Non-binary alphabets can be handled
in a number of ways. The most direct approach is to use a
Dirichlet-Multinomial model with a Dirichlet( 1

2 ) prior over
X , leading to the multi-alphabet KT estimator, whose re-
gret is O(|X | log n) (Tjalkens et al., 1993). When |X | is
large and only a small fraction of the possible symbols are
observed, this approach is inefficient (e.g. Volf, 2002). A
recently developed solution to this problem is the Sparse
Adaptive Dirichlet (SAD) estimator (Hutter, 2013). The
SAD approach enjoys regret guarantees close to those of
the multi-alphabet KT restricted to the subalphabetA ⊆ X
of symbols which occur in x1:n. In Section 4 we describe a

m irrelevant
variables

2m O(log n) regret

O(log n) regret

x1:n

x1:n

Figure 4. Worst-case regret when using CTS instead of SkipCTS.

large experiment whose performance is much improved by
the use of a SAD-like estimator.

3. Skip Context Tree Switching
In this section we generalize CTS to partial context matches
to produce the Skip Context Tree Switching (SkipCTS) al-
gorithm. We begin with some notation describing partial
context matches, then describe how the SkipCTS algorithm
incorporates these. Finally we provide a bound on the re-
gret of SkipCTS with respect to the set of all bounded K-
skip prediction suffix trees.

To gain some intuition as to why ignoring irrelevant vari-
ables matters, consider what happens internally in the con-
text tree in the presence of irrelevant variables. As the right-
hand side of Figure 4 shows, in the worst case, the data used
to train the base models can be dispersed uniformly across
2m bins. On the other hand, SkipCTS can ignore the in-
tervening variables and directly aggregate all the available
data into a single bin (Figure 4, left). In the particular case
where the base estimator is the KT estimator (with regret
O(log n) for memoryless sources), we see that SkipCTS
can enjoy an exponential reduction in regret compared to
CTS.

3.1. Partial Context Matches

We begin with some notation. Let ? denote a wildcard sym-
bol and let Y := X ∪ {?} be the wildcard extension of X .
We say that a string a ∈ Xm matches b ∈ Ym if for all
1 ≤ i ≤ m such that bi 6= ?, we have ai = bi. For ex-
ample, if X is the set of uppercase letters then BAY, BOY,
BUY, etc. all match B?Y. Given a finite string x, we say
that c ∈ Ym is a suffix of x iff x = yc′ for some c′ ∈ Xm
such that c′ matches c. We call a string c k-skip contiguous
if it contains at most k contiguous runs of ? symbols. For
example, 0??1?0 is 2-skip contiguous. Finally, we denote
the set of all k-skip contiguous strings of length i by Yik
and the union of all such sets for i = 0 . . . D as Ȳk.
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3.2. Algorithm

The SkipCTS algorithm is parametrized by a maximum
depth D ∈ N and a number of allowable skips K ∈ N.
The key idea is to maintain a context tree whose nodes cor-
respond to all possible contexts c ∈ ȲK . To do so, we gen-
eralize the CTS update equations described in Section 2.3,
leading to a recursive switching model which chooses be-
tween not only a base estimator and a split estimator, but
also between a variable number of recursively defined skip
estimators. Effectively, these additional estimators corre-
spond to ignoring one or more symbols in the context. As
we will show in Section 3.3, the addition of these new mod-
els allows us to obtain a competitive regret bound with
respect to the set of all bounded K-skip prediction suffix
trees.

In designing SkipCTS, one additional subtle issue arises:
some of the contexts in ȲK are redundant for the pur-
pose of sequential prediction. To see this, consider two
contexts from ȲK , c = 010 and c′ = ?010. Given any
string x1:n ∈ Xn, both contexts induce the same substring
xc1:n = xc

′

1:n, so that only one of them needs to be con-
sidered by our algorithm. More generally, the contexts
c ∈ ȲK for which c = ?lc′ with l ∈ N are equivalent.
We refine the algorithm by considering only the set of rep-
resentative contexts, i.e. the contexts c such that c = xc′

where x ∈ X . In other words, representative contexts are
those contexts which do not contain trailing wildcard sym-
bols. This results in a more efficient algorithm than if we
were to consider all possible contexts in ȲK . To avoid no-
tational clutter, from here onwards we will use the notation
ȲK to denote the set of representative contexts. For a given
string x, we call a representative context c which is a suffix
of x a representative suffix.

For every c ∈ ȲK we incrementally maintain a base esti-
mator ρc and the quantities ξc, αc, βc,0, βc,1, . . . . The num-
ber of βc,· quantities depends on c as follows. Define κ(c)
as the number of contiguous runs of ? symbols in c. For
c ∈ Ȳ , define r(c) := 1 if either |c| = D or κ(c) = K, and
D − |c| otherwise. The βc,0 term then corresponds to the
split estimator, while the remaining βc,· terms correspond
to r(c)− 1 skip estimators; in particular, when r(c) = 1 no
skip estimators are updated for c.

Upon observing a new symbol xt, SkipCTS first updates
αc(x1:t) ← αc(x<t)ρc(xt |xc<t) and then ξc(x1:t) ←
αc(x1:t) for all c ∈ ȲK representative suffixes of x<t with
|c| = D. The remaining representative suffixes of x<t are
updated recursively as

ξc(x1:t)← αc(x<t)bc,t +

r(c)−1∑
l=0

βc,l(x<t)zc,l,t (3)

αc(x1:t)← ηtξc(x1:t)+
(

t
t+1 − ηt

)
αc(x<t)bc,t (4)

βc,l(x1:t)← ηtξc(x1:t)+
(

t
t+1 − ηt

)
βc,l(x<t)zc,l,t (5)

where ηt = 1/ [r(c)(t+ 1)], bc,t := ρc(xt |xc<t), and zc,l,t
is the probability assigned to xt by the lth skip estimator,
which is defined as

zc,l,t := ξx′c′(x1:t) / ξx′c′(x<t), (6)

where c′ := ?lc and x′ := xt−|c′|−1. As with CTS, any
node not corresponding to a representative suffix of x<t is
left unchanged. The probability ξSKIPCTS(x1:n) output by
SkipCTS is the probability assigned by the root switching
model ξε(x1:n).

The particular update structure of SkipCTS, i.e. the con-
texts c for which ξc(x1:n) are updated, depends on both K
and D. As with CTS, we set αc(ε) = 1 whenever |c| = D.
For |c| < D, we set αc(ε) = 1

2 and

1. βc,0(ε) = 1
2 if κ(c) = K;

2. otherwise

βc,l(ε) =


1
4 if l = 0;

1
4r(c) if 1 ≤ l < r(c);

0 otherwise.

It can be verified that for any c ∈ ȲK we have αc(ε) +∑D−1
l=0 βc,l(ε) = 1. In general, we may freely initialize the

non-zero αc and βc terms, provided they are nonnegative
and sum to one. Because κ(c) in Equation 3 ranges from 0
to K and |c| from 0 to D, performing one update requires
O(D2K+1) operations – effectively the number of repre-
sentative suffixes c ∈ ȲK which match x<t. In particular,
note that whenK = 0 we recover the original Context Tree
Switching algorithm of Veness et al. (2012).

3.3. Regret Analysis

In this section we provide a bound on the regret of Skip
Context Tree Switching with respect to any bounded K-
skip prediction suffix tree (S,Θ), whereK is fixed and S is
a proper suffix set over Ȳ . At a high level, Lemma 1 bounds
the regret induced by the base estimators at the leaves of
(S,Θ). Lemma 2 bounds the regret contributed from a sin-
gle level of internal nodes in the tree, and Lemma 3 applies
a recursive argument to combine Lemmas 1 and 2. Theo-
rem 1 finally uses Lemma 3 to bound the regret of SkipCTS
with respect to an arbitrary K-skip prediction suffix tree.

Lemma 1. For any proper suffix set S over ȲK and for any
x1:n ∈ Xn, we have∏

c∈S
αc(x1:n) ≥ 1

n+ 1

∏
c∈S

αc(ε)ρc(x
c
1:n).

Proof. Let ct := S(x<t) be the context in S which is a
suffix of x<t, which is guaranteed to be unique as S is a
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Figure 5. A 1-skip prediction suffix tree.

proper suffix set. By combining Equations 3 and 4 we have
αct(x1:t) ≥ t

t+1αct(x<t)ρct(xt |x
ct
<t). By definition, for

all other c ∈ S we have αc(x1:t) = αc(x<t). Recalling
that Tc(x1:n) := {t ∈ N : c is a suffix ofx<t}, we expand
Equation 4 as

αc(x1:n) ≥ αc(ε)
∏

t∈Tc(x1:n)

t
t+1ρc(xt |x

c
<t)

= αc(ε)ρc(x
c
1:n)

∏
t∈Tc(x1:n)

t
t+1 ,

hence∏
c∈S

αc(x1:n) ≥
∏
c∈S

αc(ε)ρc(x
c
1:n)

∏
t∈Tc(x1:n)

t
t+1 ,

and the desired result follows by recalling that
{Tc(x1:n)}c∈S is a partition of {1, . . . , n}.

We now define the various kinds of decision points (e.g.
split only; split or skip) within the context tree.

Definition 1. Let S be a proper suffix set over Ȳ . A string
c ∈ Ȳ is a choice point in S whenever c is a strict suffix of
some c′ ∈ S and c = xc′, where x ∈ X .

Definition 2. Let S be a proper suffix set over Ȳ ,
and for c ∈ Ȳ let ES(c) := {l ∈ N :
?lc is a strict suffix of some c′ ∈ S}. We call S̃ := {(c, l) :
c is a choice point in S, l ∈ ES(c)} the set of choice nodes
of S.

Figure 5, for example, is described by S = {0 ? 0, 1 ?
0, 01, 11}, of which 0 and 1 are choice points. The set of
choice nodes corresponding to S is S̃ := {(0, 1), (1, 0)}.
Intuitively, these choice nodes correspond exactly to the
nodes with more than one child.

Definition 3. Let c := c1c2 . . . cm ∈ Ym. We define the
effective length of c as `(c) := |{i ∈ {1, . . .m} : ci 6= ?}|
and for a set V of such strings define `(V) := maxc∈V `(c).

Recall that our aim is to bound − log ξε(x1:n). Having
bounded the product of terms at the leaves,

∏
c∈S αc(x1:n),

we now derive a similar bound for the internal nodes.

Lemma 2. Let S be a proper suffix set over ȲK , and let
S̃d := {(c, l) ∈ S̃ : `(c) = d}. For any d ∈ {0, . . . , D−1}
and any x1:n ∈ Xn, we have that∏
(c,l)∈S̃d

βc,l(x1:n) ≥ 1

n+ 1

∏
(c,l)∈S̃d

βc,l(ε)
∏
x∈X

ξx?lc(x1:n).

Proof. For any (c, l) ∈ S̃, and any t ∈ {1, . . . , n}, let
c′ = ?lc and x′ = xt−|c′|−1. Now for any x ∈ X \{x′}, we
have ξxc′(x1:t) = ξxc′(x<t), which enables us to rewrite
Equation 6 as

zc,l,t =
∏
x∈X

ξxc′(x1:t)/ξxc′(x<t),

which, following a similar approach to the proof of
Lemma 1 leads to the desired result.

Lemma 3. For every proper suffix set S over ȲK , with S̃
denoting the set of choice nodes of S, we have

ξε(x1:n) ≥ n−`(S)
∏

(c,l)∈S̃

βc,l(ε)
∏
c∈S

αc(x<n)ρc(xn |xc<n).

Proof. For any c ∈ ȲK and l ≤ r(c), ξc(x1:n) ≥
αc(x<n)ρc(xn |xc<n) and ξc(x1:n) ≥ βc(x<n)zc,l,n. As
S is a proper suffix set, at any time step t at most one
c ∈ S̃ ∪ S of effective length d ≤ `(S) matches x<t.
By recursively applying Lemma 2 to the right hand side
of Equation 3 for every c ∈ S̃, and keeping the left hand
side whenever c ∈ S, we obtain

ξε(x1:n) ≥
`(S)−1∏
d=0

∏
(c,l)∈S̃d

1
nβc,l(ε)

∏
c∈S

αc(x<n)ρc(xn |xc<n),

The result then follows since S̃ = ∪`(S)−1
d=0 S̃d.

We are now in a position to bound the regret of Skip Con-
text Tree Switching with respect to any skipping predic-
tion suffix tree structure that can be obtained by pruning
the SkipCTS context tree.

Theorem 1. Let ψS denote a D ∈ N bounded k-skip pre-
diction suffix tree (S,Θ), where S is a proper suffix set
over Ȳk and Θ := {ρc}c∈S is a set of sequential prob-
abilistic models inside the SkipCTS context tree. For any
x1:n ∈ Xn, the regret of SkipCTS run with parameters D
and K ≥ k with respect to ψS is bounded as

Rn(ξSKIPCTS, {ψS}) ≤ [`(S) + 1] log n+ ΓKD (S),

where ΓKD (S) := −
∑

(c,l)∈S̃ log βc,l(ε)−
∑
c∈S logαc(ε).

Proof. (Sketch) Beginning with Rn(ξSKIPCTS, {ψS}) we
apply Lemma 3, then Lemma 1, and finally simplify using
ψS(x1:n) :=

∏
c∈S ρc(x

c
1:n).
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If the data is generated by some unknown prediction suffix
tree and the base estimators are KT estimators, the above
regret bound leads to a result that is similar to the regret
bound for CTS given by Veness et al. (2012), save for two
main differences. First, recall that CD, the collection of
models considered by CTS, is a subset of CD,K , the collec-
tion of models considered by SkipCTS (with equality only
when K = 0). Our bound thus covers a broader collec-
tion of models. Second, for a proper suffix set S defined
over X , i.e. a no skip prediction suffix tree, the description
length ΓKD (S) under SkipCTS with K > 0 is necessarily
larger than its CTS counterpart. While these differences
negatively affect our regret bound, we have seen in Sec-
tion 3 that we should expect significant savings whenever
the data can be well-modelled by a small K-skip predic-
tion suffix tree. We explore these issues further in the next
section.

4. Experiments
We tested the Skip Context Tree Switching on a series
of prediction problems. The first set of experiments uses
a popular data compression benchmark, while the second
set of experiments investigates performance on a diverse
set of structured image prediction problems taken from
an open source Reinforcement Learning test framework.
A reference implementation of SkipCTS is provided at:
http://github.com/mgbellemare/SkipCTS.

4.1. The Calgary Corpus

Our first experiment evaluated SkipCTS in a pure compres-
sion setting. Recall that any algorithm which sequentially
assigns probabilities to symbols can be used for compres-
sion by means of arithmetic coding (Witten et al., 1987). In
particular, given a model ξ assigning a probability ξ(x1:n)
to x1:n ∈ Xn, arithmetic coding is guaranteed to produce
a compressed file size of essentially − log2 ξ(x1:n).

We ran SkipCTS (with D = 48, K = 1) and CTS (with
D = 48) on the Calgary Corpus (Bell et al., 1989), an
established compression benchmark composed of 14 dif-
ferent files. The results, provided in Table 1, show that
SkipCTS performs significantly better than CTS on certain
files, and never suffers by more than a negligible amount.
Of interest, the files best improved by SkipCTS are those
which contain highly-structured binary data: GEO, OBJ1,
and OBJ2. For reference, we also included some CTW ex-
periments, indicated by the CTW and and SkipCTW rows,
that measured the performance of skipping using the orig-
inal recursive CTW weighting scheme; here we see that
the addition of skipping also helps. Table 1 also provides
results for CTW∗, an enhanced version of CTW for byte-
based data (Willems, 2013). Here both CTS and SkipCTS
outperform CTW, with SkipCTS providing the best results

Figure 6. The game PONG, in which the player controls the verti-
cal position of a paddle in order to return a ball and score points.

overall. Finally, it is worth noting that averaged over the
Calgary Corpus, the bits per byte performance of SkipCTS
is superior (2.10 vs 2.12) to DEPLUMP (Gasthaus et al.,
2010), a state-of-the-art n-gram model. While SkipCTS is
consistently slightly worse for text data, it is significantly
better on binary data. It is also worth pointing out that no
regret guarantees are yet known for DEPLUMP.

4.2. Atari 2600 Frame Prediction

We also tested our algorithm on the task of video game
screen prediction. We used the Arcade Learning Environ-
ment (Bellemare et al., 2013a), an interface that allows
agents to interact with Atari 2600 games. Figure 6 depicts
the well-known PONG, one of the Atari 2600’s flagship
games. In the Atari 2600 prediction setting, the alphabet X
is the set of all possible Atari 2600 screens. Because each
screen contains 160 × 210 7-bit pixels, it is both imprac-
tical and undesirable to learn a model which predicts each
xt ∈ X atomically. Instead, we take a similar approach to
that of Bellemare et al. (2013b): we divide the screen into
16 × 16 blocks and predict each block atomically using
SkipCTS or CTS combined with the SAD estimator.

Each block prediction is made using a context composed
of the symbol value of neighbouring blocks at previous
timesteps, as well as the last action taken, for a total of
11 variables. In this setting, skipping irrelevant variables
is particularly important because of the high branching fac-
tor at each level. For example, when predicting the motion
of the opponent’s paddle in PONG, SkipCTS can disregard
horizontally neighbouring blocks and the player’s action.

We trained SkipCTS with K = 0 and 1 on 54 Atari 2600
games. Each experiment consisted of 10 trials, each lasting
100,000 time steps, where one time step corresponds to 4
emulated frames. Each trial was assigned a specific random
seed which was used for all values for K. We report the
average log-loss per frame over the last 4500 time steps,
corresponding to 5 minutes of real-time Atari 2600 play.
Throughout our trials actions were selected uniformly at
random from each game’s set of legal actions.

The full table of results is provided as supplementary mate-

http://github.com/mgbellemare/SkipCTS
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Table 1. Compression results on the Calgary Corpus, in average bits needed to encode each byte. Highlights indicate improvements
greater than 3% from CTW to SkipCTW and from CTS to SkipCTS, respectively. CTW* results are taken from Willems (2013).

File bib book1 book2 geo news obj1 obj2 paper1 paper2 pic progc progl progp trans

CTW* 1.83 2.18 1.89 4.53 2.35 3.72 2.40 2.29 2.23 0.80 2.33 1.65 1.68 1.44

CTW 2.25 2.31 2.12 5.01 2.78 4.63 3.19 2.84 2.59 0.90 3.00 2.11 2.24 2.09
SKIPCTW 2.15 2.32 2.10 3.91 2.77 4.57 2.96 2.75 2.54 0.90 2.91 2.00 2.08 1.83

Diff. 4.4% -0.4% 0.9% 22.0% 0.4% 1.3% 7.2% 3.2% 1.9% 0.0% 3.0% 5.2% 7.1% 12.4%
CTS 1.81 2.20 1.90 4.18 2.34 3.66 2.36 2.28 2.23 0.79 2.33 1.61 1.64 1.39

SKIPCTS 1.75 2.20 1.89 3.60 2.34 3.40 2.19 2.26 2.22 0.76 2.30 1.59 1.61 1.35

Diff. 3.3% 0.0% 0.5% 13.9% 0.0% 7.1% 7.2% 0.9% 0.4% 3.8% 1.3% 1.2% 1.8% 2.9%

rial. For each game we computed the improvement in log-
loss per frame and determined whether the difference in
loss was statistically significant using the Wilcoxon signed
rank test. As a whole, SkipCTS achieved lower log-loss
than CTS in 54 out of 55 games; all these differences are
significant. While SkipCTS performed slightly worse in
ELEVATOR ACTION, the difference was not statistically
significant. The average overall log-loss improvement was
9.0% and the median, 8.25%; improvements ranged from -
2% (ELEVATOR ACTION) to 36% (FREEWAY). SkipCTS
with K = 1 processed on average 34 time steps (136
frames) per second, corresponding to just over twice the
real-time speed of the Atari 2600. We further ran our
algorithm with K = 2 and observed an additional, sig-
nificant increase in predictive performance on 18 games
(up to 21.7% over K = 1 for TIME PILOT). On games
where K = 2 is unnecessary, however, the performance
of SkipCTS degraded somewhat. As discussed above, this
behaviour is an expected consequence of the larger ΓKD (S).

5. Discussion
We have seen that by allowing context trees to skip over
variables, SkipCTS can achieve substantially better perfor-
mance over CTS in problems where a good variable order-
ing may not be known a priori. Theoretically we have seen
that SkipCTS can, in the extreme case, have exponentially
lower regret. Empirically we observe substantial benefits
in practice over state of the art lossless compression algo-
rithms in problems involving highly structured data (e.g.
the GEO problem in the Calgary Corpus). The dramatic and
consistent improvement seen across over 50 Atari predic-
tion problems indicate that SkipCTS is especially impor-
tant in multi-dimensional prediction problems where issues
of variable ordering are naturally exacerbated.

The main drawback of SkipCTS is the increased compu-
tational complexity of inference as a result of the more
expressive model class. However, our experiments have
demonstrated that small values of K can make a sub-
stantial difference. Furthermore, the computational and
memory costs of SkipCTS can be alleviated in practice.

The tree structure induced by the recursive SkipCTS up-
date (Equations 3–5) can naturally be parallelized, while
the SkipCTS memory requirements can easily be bounded
through hashing. Finally note that sampling from the model
remains aO(D) operation, so, for instance, planning with a
SkipCTS-based reinforcement learning model is nearly as
efficient as planning with a CTS-based model.

Tree-based models have a long history in sequence predic-
tion, and the persistent issue of variable ordering has been
confronted in many ways. The main strengths of SkipCTS
are inherited from CTW – efficient, incremental, and exact
Bayesian inference, and strong theoretical guarantees on
asymptotic regret. Other approaches with more represen-
tational flexibility lack these strengths. In the model based
reinforcement learning setting, some methods (e.g. McCal-
lum, 1996; Holmes & Isbell, 2006; Talvitie, 2012) extend
the traditional predictive suffix tree by allowing variables
from different time steps to be added in any order, or by al-
lowing the tree to excise portions of history, but these meth-
ods are not incremental and do not provide regret guaran-
tees. Bayesian decision tree learning methods (e.g. Chip-
man et al., 1998; Lakshminarayanan et al., 2013) could in
principle be applied in the sequential prediction setting.
These typically allow arbitrary variable ordering, but re-
quire approximate inference to remain tractable.

6. Conclusion
In this paper we presented Skip Context Tree Switching, a
polynomial-time algorithm which efficiently mixes over se-
quences of prediction suffix trees that may skip overK con-
tiguous runs of variables. Our results show that SkipCTS is
practical for smallK and can produce significant empirical
improvements compared to members of the Context Tree
Weighting family (even with K = 1) in problems where
irrelevant variables are naturally present.
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Supplementary Material

1 Proof of Theorem 1
The probability SkipCTS assigns to x1:n ∈ Xn is defined as ξSKIPCTS(x1:n) := ξε(x1:n). We thus expand the loss
− log ξSKIPCTS(x1:n) using Lemma 3:

− log ξSKIPCTS(x1:n) ≤ − log

n−`(S) ∏
(c,l)∈S̃

βc,l(ε)
∏
c∈S

αc(x<n)ρc(xn |xc<n)


= `(S) log n− log

∏
(c,l)∈S̃

βc,l(ε)− log

[∏
c∈S

αc(x<n)ρc(xn |xc<n)

]
. (1)

We now expand the rightmost term of this equation using Lemma 1:

− log

[∏
c∈S

αc(x<n)ρc(xn |xc<n)

]
≤ − log

[
1

n

∏
c∈S

αc(ε)ρc(x
c
<n)ρc(xn |xc<n)

]
= log n− log

∏
c∈S

αc(ε)− log
∏
c∈S

ρc(x
c
1:n)

= log n− log
∏
c∈S

αc(ε)− logψS(x1:n),

where the last equality follows from the definition of ψS(x1:n). Incorporating this result into Equation 1, we obtain

− log ξSKIPCTS(x1:n) ≤ [`(S) + 1] log n− log
∏

(c,l)∈S̃

βc,l(ε)− log
∏
c∈S

αc(ε)− logψS(x1:n)

and hence

Rn(ξSKIPCTS, {ψS}) ≤ [`(S) + 1] log n− log
∏

(c,l)∈S̃

βc,l(ε)− log
∏
c∈S

αc(ε)

= [`(S) + 1] log n+ ΓKD (S)

as desired.



K = 0 K = 1 K = 2
Loss Speed Loss Speed Sig. Loss Speed Sig.

ASTERIX 55.79 346.61 48.39 34.41 X 38.30 7.35 X
BEAM RIDER 94.98 296.17 86.11 34.40 X 101.63 7.01 X
PONG 7.78 346.79 6.83 37.96 X 7.90 19.98 X
Q*BERT 7.04 330.02 6.46 39.92 X 7.18 9.71 X
SEAQUEST 99.31 316.30 89.73 33.49 X 78.07 6.85 X
ALIEN 59.13 276.87 53.92 35.23 X 62.35 6.09 X
AMIDAR 11.84 317.90 10.75 38.60 X 10.84 9.00
ASSAULT 39.26 352.55 34.89 35.75 X 34.84 10.42
ASTEROIDS 24.25 352.44 23.99 35.47 X 16.19 21.42 X
ATLANTIS 21.96 273.05 19.80 30.67 X 19.98 12.69
BANK HEIST 78.71 282.97 77.99 30.29 X 72.97 6.58 X
BATTLE ZONE 193.35 240.58 179.92 28.37 X 169.89 6.12
BERZERK 54.76 278.57 50.80 29.41 X 52.26 7.12 X
BOWLING 1.46 314.82 1.43 35.90 X 1.58 17.73
BOXING 194.76 275.75 192.38 39.84 X 183.68 6.66 X
BREAKOUT 5.46 321.19 4.21 35.41 X 5.56 18.81 X
CARNIVAL 31.38 301.71 24.67 32.76 X 24.17 9.78
CENTIPEDE 72.05 291.38 66.94 29.57 X 66.97 5.61
CHOPPER COMMAND 181.75 281.84 179.02 26.64 X 155.57 5.65 X
CRAZY CLIMBER 42.61 357.73 35.18 34.54 X 39.00 7.34 X
DEMON ATTACK 154.61 346.35 144.81 28.64 X 143.56 8.26
DOUBLE DUNK 192.16 297.47 190.52 27.85 X 205.78 5.71 X
ELEVATOR ACTION 67.04 322.66 68.31 29.85 66.38 5.59
ENDURO 276.54 274.30 247.83 26.53 X 313.12 4.37 X
FISHING DERBY 111.75 254.84 101.51 29.34 X 129.73 5.16 X
FREEWAY 6.71 260.11 4.32 37.14 X 5.22 9.82 X
FROSTBITE 55.56 295.62 52.25 33.79 X 60.35 6.09 X
GOPHER 23.18 358.41 19.14 36.11 X 15.49 10.51 X
GRAVITAR 61.14 343.60 57.16 33.48 X 53.98 8.18 X
H.E.R.O. 20.97 280.24 18.05 37.72 X 19.75 7.96 X
ICE HOCKEY 98.01 296.70 97.22 29.65 X 80.33 5.87 X
JAMES BOND 160.23 306.32 147.03 28.67 X 162.47 5.28 X
JOURNEY ESCAPE 1104.44 182.08 1085.74 17.03 X 1106.69 1.88 X
KANGAROO 17.11 319.69 16.52 37.63 X 14.58 9.38 X
KRULL 143.16 261.17 129.05 29.41 X 154.31 4.18 X
KUNG-FU MASTER 27.78 300.10 23.55 35.28 X 25.38 6.70 X
MONTEZUMA’S REVENGE 12.42 316.31 11.54 36.08 X 12.86 7.35 X
MS. PACMAN 33.92 321.21 31.58 34.23 X 34.09 5.30 X
NAME THIS GAME 54.61 301.56 45.73 32.97 X 50.06 5.08 X
POOYAN 21.49 303.85 19.67 35.70 X 21.26 8.66 X
PRIVATE EYE 95.03 290.91 83.69 31.46 X 85.28 4.88
RIVER RAID 83.65 283.98 74.08 32.50 X 70.63 4.87 X
ROAD RUNNER 101.87 295.63 98.46 32.56 X 104.66 6.05 X
ROBOTANK 206.08 262.14 179.70 28.84 X 149.26 4.18 X
SKIING 73.33 273.06 71.77 32.64 X 57.63 6.21 X
SPACE INVADERS 47.14 328.05 44.07 40.59 X 45.02 5.81
STAR GUNNER 133.17 363.04 111.79 36.55 X 78.34 7.02 X
TENNIS 58.36 311.96 54.09 38.42 X 49.38 5.93 X
TIME PILOT 173.83 334.52 163.52 30.20 X 131.81 4.76 X
TUTANKHAM 79.16 330.27 68.17 44.46 X 63.74 6.97 X
UP AND DOWN 204.05 231.64 196.29 37.32 X 190.42 4.09
VENTURE 24.13 349.33 22.38 51.87 X 19.17 6.72
VIDEO PINBALL 33.55 282.75 29.27 47.92 X 40.83 6.48 X
WIZARD OF WOR 24.69 357.22 23.42 51.06 X 23.66 7.52
YAR’S REVENGE 112.39 324.94 104.83 36.36 X 82.30 8.14 X

Table 1: Prediction results for 55 Atari games. Loss corresponds to the per frame negative log2 probability, averaged
over the last 4500 frames of data of 10 trials. Speed corresponds to the average number of frames processed per
second. Sig. indicates a statistically significant difference between K ∈ {0, 1} and K ∈ {1, 2}, respectively.


