
Bayesian Learning of Recursively Factored Environments

Marc Bellemare mg17@cs.ualberta.ca
Joel Veness veness@cs.ualberta.ca
Michael Bowling bowling@cs.ualberta.ca

University of Alberta, Edmonton, Canada, T6G 2E8

Abstract

Model-based reinforcement learning tech-
niques have historically encountered a num-
ber of difficulties scaling up to large obser-
vation spaces. One promising approach has
been to decompose the model learning task
into a number of smaller, more manageable
sub-problems by factoring the observation
space. Typically, many different factoriza-
tions are possible, which can make it difficult
to select an appropriate factorization with-
out extensive testing. In this paper we in-
troduce the class of recursively decomposable
factorizations, and show how exact Bayesian
inference can be used to efficiently guaran-
tee predictive performance close to the best
factorization in this class. We demonstrate
the strength of this approach by presenting a
collection of empirical results for 20 different
Atari 2600 games.

1. Introduction

The ability of a reinforcement learning agent to ac-
curately model its environment can be leveraged in a
number of useful ways. In simulation-based search,
UCT (Kocsis & Szepesvári, 2006), POMCP (Silver &
Veness, 2010) and FSSS (Walsh et al., 2010) can all
be used to produce refined value function estimates
tailored to the current situation facing the agent.
Within the context of Bayesian reinforcement learn-
ing, forward search can provide a principled means to
explore the environment (Asmuth & Littman, 2011;
Guez et al., 2012). Having access to a model also al-
lows for hybrid techniques such as Dyna (Sutton, 1991;
Silver et al., 2008) and TD-Search (Silver et al., 2012),
which use a model of the environment to enhance the

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

performance of more traditional model-free reinforce-
ment learning techniques.

Often, the environment dynamics are unknown a priori
and model-based agents must learn their model from
experience. This has recently motivated the develop-
ment of a number of promising approaches; of note,
Doshi-Velez (2009), Walsh et al. (2010), Veness et al.
(2010), Veness et al. (2011), Nguyen et al. (2012), and
Guez et al. (2012) have collectively demonstrated that
it is feasible to learn good probabilistic models of small
but challenging domains containing various degrees of
partial observability and stochasticity.

More often than not, however, the evaluation of model
learning algorithms is performed over synthetic do-
mains designed to illustrate particular algorithmic
challenges. Such domains typically feature intricate
environment dynamics over small, constrained obser-
vation spaces, making the model learning problem per-
haps unnecessarily difficult. In this work, we focus on
the reverse situation: domains with high-dimensional
observation spaces but fundamentally simple dynam-
ics, such as the Arcade Learning Environment (Belle-
mare et al., 2013), a collection of reinforcement learn-
ing domains based on Atari 2600 games. Our aim in
this paper is to provide algorithmic scaffolding that
lets us scale existing, successful model learning algo-
rithms to larger observation spaces.

One promising approach for scaling model-based re-
inforcement learning to larger observation spaces is
to consider various kinds of factored models (Ross
& Pineau, 2008; Poupart, 2008; Diuk et al., 2009).
A good choice of factorization can make the model
learning task much easier by decomposing it into a
number of more manageable sub-problems; the re-
sultant performance then depends on the particu-
lar choice of factorization. In this paper we intro-
duce a meta-algorithm that efficiently performs exact
Bayesian model averaging over a large class of recur-
sively decomposable factorizations, allowing us to pro-
vide strong competitive guarantees with respect to the

Bayesian Learning of Recursively Factored Environments

Observation Space Reward Space

O1 O2 O3 R
Figure 1. A factored percept space, where X = O1 ×O2 ×O3 ×R.

best factorization within our class.

Our approach becomes particularly meaningful in the
context of developing domain-independent agents, i.e.
agents that attempt to perform well over a large set
of domains (Bellemare et al., 2013; Hausknecht et al.,
2012). In particular, we apply our model averaging
techniques to a recursive decomposition of the Atari
2600 image space to obtain efficient and accurate for-
ward models on twenty different games. To the best
of our knowledge, our model learning algorithm is the
first to successfully handle observation spaces of this
magnitude in a model-based reinforcement learning
setting.

2. Background

Before we describe our model averaging technique, we
first need to introduce some notation for probabilistic
agents. The framework used in this paper was intro-
duced by Hutter (2005), and can be seen as a natural
generalization of a coding distribution, a mathemat-
ical object from information theory that is used to
assign probabilities to sequential data. This gener-
alization works similarly to how (PO)MDPs (Puter-
man, 1994; Kaelbling et al., 1998) generalize Markov
Models and Hidden Markov Models to the control set-
ting. This general presentation allows us to present our
techniques in a way that is applicable to many differ-
ent kinds of model-based reinforcement learning algo-
rithms, including techniques for discrete (PO)MDPs.

2.1. Probabilistic Agent Setting

This section describes our probabilistic agent setting,
how factored models can be specified within it, and
how Bayesian model averaging can be used over a class
of factored models to predict nearly as well as the best
factorization in a given class.

We begin with some notation. A string x1x2 . . . xn
of length n is denoted by x1:n. The prefix x1:j of
x1:n, j ≤ n, is denoted by x≤j or x<j+1. The no-
tation generalizes to blocks of symbols: e.g. ax1:n de-
notes a1x1a2x2 . . . anxn and ax<j denotes the string

a1x1a2x2 . . . aj−1xj−1. The empty string is denoted
by ε. The concatenation of two strings s and r is de-
noted by sr. The finite action, observation, and reward
spaces are denoted by A,O, and R respectively. We
will also use X to denote the joint perception space
O ×R.

We now define an environment to be a probability dis-
tribution, parametrized by a sequence of actions, over
possible observation-reward sequences. More formally,
an environment ρ is a sequence of parametrized prob-
ability mass functions {ρ0, ρ1, ρ2, . . . }, where

ρn : An → (Xn → [0, 1]),

that satisfies, for all n ∈ N, for all a1:n ∈ An, for all
x<n ∈ Xn−1, the constraint that

ρn−1(x<n | a<n) =
∑
xn∈X

ρn(x1:n | a1:n), (1)

with the base case defined as ρ0(ε | ε) = 1. Equation
1 captures the intuitive constraint that an action per-
formed at time n should have no effect on earlier per-
ceptions x<n. Where possible, from here onwards we
will drop the index n in ρn when the meaning is clear.
Now, given an environment ρ, the predictive probabil-
ity of a percept xn can be defined as

ρ(xn | ax<nan) := ρ(x1:n | a1:n)/ρ(x<n | a<n) (2)

∀a1:n∀x1:n such that ρ(x<n | a<n) > 0. This implies a
version of the familiar product rule, i.e.

ρ(x1:n | a1:n) = ρ(x1 | a1) · · · ρ(xn | ax<nan). (3)

Our notion of environment is used in two distinct ways.
The first is as a means of describing the true underly-
ing environment, which may be unknown to the agent.
The second is to describe an agent’s model of the en-
vironment. This model is typically adaptive, and will
often only be an approximation to the true environ-
ment. To make the distinction clear, we will refer to
an agent’s environment model when talking about the
agent’s model of the environment. Additionally, we
will also introduce the notion of an ε-positive environ-
ment model. This is defined as an environment model

Bayesian Learning of Recursively Factored Environments

ρ satisfying ρ(xn | ax<nan) ≥ ε for some real ε > 0,
for all n ∈ N, for all x1:n ∈ Xn and for all a1:n ∈ An.
From here onwards, we assume that all environment
models are ε-positive.

2.2. Factored Environment Models

We now introduce some notation for environments
whose percept spaces X can be expressed as X1×X2×
· · · × Xk, the Cartesian product of k ∈ N subspaces.
An example of such a factored space is depicted in Fig-
ure 1. First, let X<i := X1 × · · · × Xi−1 for 1 ≤ i ≤ k.
This notation will also generalize to n-dimensional
string types, with Xni := (Xi)n and Xn<i := (X<i)n.
Furthermore, given a string x1:n ∈ (X1 × · · · × Xk)n,
we introduce the notation xit ∈ Xi for 1 ≤ i ≤ k and
1 ≤ t ≤ n, to denote the ith component of xt. This will
again generalize to the multi-dimensional case, with
xi1:n := xi1x

i
2 . . . x

i
n.

Now, given an action space A and a factored percept
space X := X1× · · · ×Xk, a k-factored environment is
defined by a tuple (ρ1, . . . , ρk), where each component
of the tuple is an environment model factor

ρi :=
{
ρin : (A×X)n−1×A×X<i → (Xi → [0, 1])

}
n∈N

for 1 ≤ i ≤ k, with each ρin defining a parametrized
probability mass function. Using the chain rule, this
naturally induces a factored environment given by

ρ(x1:n | a1:n) =

n∏
t=1

ρ(xt | ax<t)

=

n∏
t=1

k∏
i=1

ρit(x
i
t | ax<tatx<it)

=

k∏
i=1

ρi(xi1:n | a1:n),

where the final line uses the notation

ρi(xi1:n | a1:n) :=

n∏
t=1

ρit(x
i
t | ax<tatx<it).

One can easily verify that a k-factored environment
satisfies Equation 1, and is therefore a valid environ-
ment.

2.3. Model Averaging over Factorizations

Next we consider a Bayesian approach to learning a
factorization online. Given a finite class M of candi-
date factorizations, we can define a mixture environ-
ment model that averages over the set of factorizations

in M by

ξ(x1:n | a1:n) :=
∑
ρ∈M

wρ0 ρ(x1:n | a1:n), (4)

where each real weight wρ0 > 0 and
∑
ρ∈M wρ0 = 1.

This is a direct application of Bayesian model aver-
aging for our kind of probabilistic agent; see (Veness
et al., 2011) for a more detailed discussion of this ap-
proach. We can show that this method is justified
whenever there exists a factorization ρ∗ ∈M that pre-
dicts well, since

− log ξ(x1:n | a1:n) = − log
∑
ρ∈M

wρ0 ρ(x1:n | a1:n)

≤ − logwρ
∗

0 − log ρ∗(x1:n | a1:n),

which implies that we only suffer a constant penalty
when using ξ in place of ρ∗. This can be interpreted as
a kind of regret bound, where the loss function is given
by the code length (Grünwald, 2007), i.e. the number
of bits needed to encode the sequence of percepts x1:n

under the environment model ρ(· | a1:n). By taking
expectations on both sides with respect to the true
environment µ and rearranging, we see that this result
implies

Eµ
[
log

ρ∗(x1:n | a1:n)

ξ(x1:n | a1:n)

]
≤ − logwρ

∗

0 .

This can be rewritten as

Eµ
[
log

µ(x1:n | a1:n)ρ∗(x1:n | a1:n)

ξ(x1:n | a1:n)µ(x1:n | a1:n)

]
≤ − logwρ

∗

0 ,

which upon rearranging gives

D1:n(µ ‖ ξ) ≤ − logwρ
∗

0 +D1:n(µ ‖ ρ∗), (5)

withD1:n(µ ‖ ρ) :=
∑
x1:n

µ(x1:n | a1:n) log µ(x1:n | a1:n)
ρ(x1:n | a1:n)

denoting the KL divergence between the distributions
µ(· | a1:n) and ρ(· | a1:n). Dividing Equation 5 by n

highlights the per-step penalty − 1
n logwρ

∗

0 of using

ξ, rather than ρ∗, to predict x1:n. As wρ
∗

0 does not
depend on n, this penalty vanishes asymptotically.
Intuitively, the bound in Equation 5 implies that the
environment model ξ is in some sense close, as n gets
large, to the environment model that uses the best
factorization in M.

The main drawback with Bayesian model averaging
is that it can be computationally expensive. Ideally
we would like to weight over many possible candidate
factorizations, but this typically isn’t possible if Equa-
tion 4 is implemented directly. Our main contribution
in this paper is to show that, by carefully choosing

Bayesian Learning of Recursively Factored Environments

both the prior and the class of possible factorizations,
model averaging can be used to derive a practical tech-
nique that allows us to build probabilistic agents that
do not need to commit to a particular factorization in
advance.

3. Recursive Factorizations

We now introduce our efficiently computable class
of structured factorizations. Here we focus on a
domain-independent presentation and defer to Section
4 a more concrete instantiation tailored to the Atari
2600 platform. We restrict our attention to factoring
the observation space, noting that this imposes no
restrictions as the reward can always be modelled by
a separate environment model factor.

Definition 1. A recursively decomposable space of
nesting depth d = 0 is a set. When d ∈ N, a recur-
sively decomposable space is the set formed from the
Cartesian product of two or more recursively decom-
posable spaces of nesting depth d − 1. The number of
factors in the Cartesian product defining a recursively
decomposable space F at a particular nesting depth is
denoted by dim(F), and is defined to be 1 if the nesting
depth is 0.

For instance, a recursively decomposable space O with
nesting depth 2 could be defined as: O := O1 × O2;
O1 := O1,1×O1,2; O2 := O2,1×O2,2, with O1,1, O1,2,
O2,1 and O2,2 being (arbitrary) sets. The recursive
structure in O has a natural representation as a tree:

O1,1

O1

�� ��

O

�� ��

O1,2 O2,1

O2

�� ��
O2,2

where the set appearing at each non-leaf node is
formed from the Cartesian product of its children. In
this example, dim(O) = dim(O1) = dim(O2) = 2 and
dim(O1,1) = dim(O1,2) = dim(O2,1) = dim(O2,2) = 1.
In what follows, we will continue to use the notation
Ok to denote the kth factor of the Cartesian product
defining the recursively decomposable space O. A re-
cursively decomposable space can clearly be factored
in many possible ways. In preparation for defining a
prior over factorizations, we now define the set of all
possible factorizations that can be applied to a partic-
ular choice of recursively decomposable space.

Definition 2. Given a recursively decomposable space
F with nesting depth at least d ∈ N, the set Cd(F) of

all recursive factorizations of F is defined by

Cd(F) :=
{
F
}
∪

dim(F)
ą

i=1

Cd−1 (Fi) , (6)

with C0(F) :=
{
F
}

.

Returning to our example, this gives the following set
of factorizations: C2(O) = {O, O1×O2, O1,1×O1,2×
O2, O1 × O2,1 × O2,2,O1,1 × O1,2 × O2,1 × O2,2}.
Notice that although the number of factorizations for
the above example is small, in general the number of
possible factorizations can grow super-exponentially in
the nesting depth.

3.1. A Prior over Recursive Factorizations

Now we describe a prior on Cd(F) that will support
efficient computation, as well as being biased towards
factorizations containing less nested substructure.

First note that in the recursive construction of Cd(F)
in Equation 6, there are essentially two cases to con-
sider: either we stop decomposing the space F (corre-
sponding to the {F} term in Equation 6) or we con-
tinue to split it further. This observation naturally
suggests the use of a hierarchical prior, which recur-
sively subdivides the remaining prior weight amongst
each of the two possible choices. If we use a uniform
weighting for each possibility, this gives a prior weight-
ing of 2−Γd(f), where Γd(f) returns the total number
of stop/split decisions needed to describe the factor-
ization f ∈ Cd(F), with the base case of Γ0(f) := 0
(since when d = 0, no stop or split decision needs to
be made). This prior weighting is identical to how
the Context Tree Weighting method (Willems et al.,
1995) weights over tree structures, and is an applica-
tion of the general technique used by the class of Tree
Experts described in Section 5.3 of (Cesa-Bianchi &
Lugosi, 2006). It is a valid prior, as one can show∑
f∈Cd 2−Γd(f) = 1 for all d ∈ N.

One appealing side-effect of this recursive construction
is that it assigns more prior weight towards factoriza-
tions containing smaller amounts of nested substruc-
ture. For instance, returning again to our example,
2−Γ2(O) = 1

2 , while 2−Γ2(O1×O2,1×O2,2) = 1
8 . A second,

less obvious property is that the prior implicitly con-
tains some structure that will make model averaging
easier. How this works in our reinforcement learning
setting will become clear in the next section.

3.2. Recursively Factored Mixture
Environment Models

Now that we have our prior over factorizations, we pro-
ceed by combining it with the model averaging tech-

Bayesian Learning of Recursively Factored Environments

nique described in Section 2.3 to define the class of
recursively factored mixture environment models.

The first step is to commit to a set of base environment
model factors from which each factored environment
is formed. More precisely, this requires specifying an
environment model factor for each element of the set
of possible stopping points

Sd(F) := {F} ∪
dim(F)⋃
i=1

Sd−1(Fi) for d > 0,

with S0(F) := {F}, within a recursively decomposable
space F of nesting depth d. In our previous example,
S2(O) = {O,O1,O2,O1,1,O1,2,O2,1,O2,2}, which
means that we would need to specify 7 environment
model factors. Each environment model factor needs
to have an appropriate type signature that depends
on both the history and the parts of the percept space
preceding it. For instance, an environment model fac-
tor processing O2 at time n in our previous example
would depend on a history string that was an element
of the set (A×O)n−1×A×O1. Similarly, an environ-
ment model factor for O2,2 would depend on a history
string from the set (A×O)n−1×A×O1×O2,1. Now,
given a history ax1:n and a d ≥ 0 times recursively
decomposable space F , a recursively factored mixture
environment is defined as

ξdF (x1:n | a1:n) :=
∑

f∈Cd(F)

2−Γd(f)ρf (x1:n | a1:n), (7)

where each factored model is defined by a product of
environment model factors

ρf (x1:n | a1:n) :=
∏

τ∈T (f)

πτ (xτ1:n | a1:n).

Here T (X) := {Xi}ki=1 denotes the set of subspaces
of a given factored percept space X and xXi

1:n ∈ Xni
denotes the component of x1:n corresponding to Xi.
The base case of Equation 7, when d = 0, yields
ξ0
F (x1:n | a1:n) = πF (x1:n | a1:n).

Notice that there exists a significant amount of shared
structure in Equation 7, since each environment model
factor can appear multiple times in the definition
of each factored environment model. This property,
along with the recursive definition of our prior in Sec-
tion 3.1, allows us to derive the identity

2ξdF (x1:n | a1:n) = πF (xF1:n | a1:n)+

dim(F)∏
i=1

ξd−1
Fi

(x1:n | a1:n).

(8)

This identity, whose proof we defer to the appendix,
constitutes the core theoretical result of this work: it
allows Equation 7 to be computed efficiently.

Equation 8 is essentially an application of the Gener-
alized Distributive Law (Aji & McEliece, 2000), a key
computational concept underlying many efficient algo-
rithms. By using dynamic programming to compute
each ξdF term only once, the time overhead of perform-
ing exact model averaging over Cd(F) is reduced to just
O(n|Sd(F)|). Furthermore, provided each base envi-
ronment model factor can be updated online and the
{ξdF ′}F ′∈Sd(F) terms are kept in memory, each percept
can be processed online in timeO(|Sd(F)|). A concrete
application of this method will be given in Section 4.

Finally, as our technique performs exact model
averaging, it is straightforward to provide theoretical
performance guarantees along the lines of Section 2.3.

Theorem 1. Given a recursively decomposable space
F with nesting depth d ∈ N, for all a1:n ∈ An, for
all x1:n ∈ Xn, for all f ∈ Cd(F), we have

− log2 ξ
d
F (x1:n | a1:n) ≤ Γd(f) − log2 ρf (x1:n | a1:n),

and for any environment µ,

D1:n(µ ‖ ξdF) ≤ Γd(f) +D1:n(µ ‖ ρf).

Hence our technique is asymptotically competitive
with the best factorization in Cd(F).

4. Quad-Tree Factorization

Section 3 provides a general framework for specify-
ing recursively factored mixture environment models.
The aim of this current section is to give an example of
how this framework can extend existing model learning
algorithms to domains with large observation spaces,
such as Atari 2600 games. The quad-tree factoriza-
tion (QTF) technique we now describe is particularly
suited to image-based observation spaces. Although
our factorization is presented in Atari 2600 terms, it
is easily extended to other domains whose observation
space exhibits two-dimensional structure.

Following the notation used by Bellemare et al. (2012a)
to describe Atari 2600 observation spaces, let Dx and
Dy denote totally ordered sets of row and column
indices, with the joint index space given by D :=
Dx × Dy. In our case, Dx = {1, 2, . . . , 160} and
Dy = {1, 2, . . . , 210}. Denote by C a finite set of
possible pixel colours. We define a pixel as a tuple
(x, y, c) ∈ Dx×Dy×C, where x and y denote the pixel’s
row and column location and c describes its colour. An
observation o is defined as a set of |D| pixels, with each
location (x, y) ∈ D uniquely corresponding to a single
pixel (x, y, c). The set of all possible observations is
denoted by O.

Bayesian Learning of Recursively Factored Environments

Figure 2. An example quad-tree factorization of an Atari
2600 screen, where each labelled square corresponds to a
factor. The game shown is Space Invaders.

We now describe a natural way to recursively de-
compose O by dividing each region into four equal
parts; an example of such a decomposition is shown
in Figure 2. For a given D′x ⊆ Dx whose
ordered elements are x1, x2, x3, . . . , xn, denote by
l(D′x) :=

{
x1, x2, . . . , xbn/2c

}
and by h(D′x) :={

xbn/2c+1, xbn/2c+2, . . . , xn
}

the lower and upper
halves of D′x; similarly let l(D′y) and h(D′y) de-
note the two halves of D′y ⊆ Dy. Let OD′x,D′y :={{

(x, y, c) : x ∈ D′x, y ∈ D′y, (x, y, c) ∈ o
}

: o ∈ O
}

be
the set of image patches that can occur in the region
defined by D′x and D′y, such that O = ODx,Dy

. As-
suming for now that |Dx| and |Dy| are both divisible
by 2d, the recursively decomposable space FdDx,Dy

on
O is then recursively defined as

FdD′x,D′y :=


OD′x,D′y if d = 0

Fd−1
l(D′x),l(D′y) ×Fd−1

l(D′x),h(D′y) ×
Fd−1

h(D′x),l(D′y) ×Fd−1
h(D′x),h(D′y)

otherwise

(9)

The base case corresponds to indivisible image patches
of size |Dx|/2d×|Dy|/2d. These image patches are
used to form larger image patches. Note that there
is a one-to-one correspondence between elements of
FdDx,Dy

and O. Whenever |Dx| or |Dy| is not divis-

ible by 2d, as is the case with Atari 2600 games, a
simple solution is to enlarge Dx and Dy appropriately
and insert pixels whose colour is a special out-of-screen
indicator1.

4.1. Algorithm

Algorithm 1 provides pseudocode for an online im-
plementation of QTF. The algorithm is invoked once

1Having each dimension divisible by 2d is not strictly
required, but we found it to considerably simplify the im-
plementation details.

Algorithm 1 Online Quad-Tree Factorization

Require: A quad-tree decomposable space F
Require: A nesting depth d ∈ {0} ∪ N
Require: A percept xt at time t ∈ N

qtf(F , d, xt)
Update πF with xFt
if d = 0 then

ξdF ← πF
else

for i = 1 . . . 4 do
qtf(Fi, d− 1, xt)

ξdF ← 1
2πF + 1

2

4∏
i=1

ξd−1
Fi

per time step; its arguments are the top-level space
FdDx,Dy

, its nesting depth d, and the current per-
cept. The algorithm recursively updates the base en-
vironment model factor πF corresponding to F as
well as its factors {Fi}4i=1. The πF and ξdF vari-
ables respectively store the values πF (xF1:n | a1:n) and
ξdF (x1:n | a1:n); both sets of variables are initialized to
1. As QTF is a meta-algorithm, any suitable set of
base environment model factors may be used. In our
implementation we avoid numerical issues such as un-
derflow by storing and manipulating probabilities in
the logarithmic domain.

5. Experiments

We evaluated our quad-tree factorization on the Ar-
cade Learning Environment (ALE) (Bellemare et al.,
2013), a reinforcement learning interface to more than
sixty Atari 2600 games. The observation space we
consider is the 160×210-pixel game screen, with each
pixel taking on one of 128 colours. When emulating
in real-time, game screens are generated at the rate
of 60 frames per second; a full five-minute episode
lasts 18,000 frames. The action space is the set of joy-
stick motions and button presses, giving a total of 18
distinct actions. Similar to previous work using ALE
(Bellemare et al., 2013; Naddaf, 2010; Bellemare et al.,
2012a;b), we designed and optimized our algorithm us-
ing five training games and subsequently evaluated it
on a hold-out set of fifteen testing games.

5.1. Experimental Setup

For practical reasons, we used a quad-tree factoriza-
tion that considered image patches whose size ranged
from 32×32 down to 4×4; this corresponds to a nest-
ing depth of 3. Empirically, we found that larger patch
sizes generalized poorly and smaller patches performed

Bayesian Learning of Recursively Factored Environments

worse due to limited contextual information. Each
patch was predicted using a context tree switching
(CTS) model (Veness et al., 2012) based on ten neigh-
bouring patches from the current and previous time
steps, similar to the P-context trees of Veness et al.
(2011). We also encoded the most recent action as an
input feature to the CTS model. To handle the large
image patch alphabets, we used the recently developed
Sparse Sequential Dirichlet (SSD) estimator (Veness &
Hutter, 2012) at the internal nodes of our CTS model.

To curb memory usage and improve sample efficiency,
we incorporated a set of well-established techniques
into our implementation. For each patch size, a single
CTS model was shared across patch locations, giving
a limited form of translation invariance. Finally, each
CTS model was implemented using hashing (Willems
& Tjalkens, 1997) so as to better control memory us-
age. In practice, we found that larger hash tables al-
ways resulted in better results.

We compared QTF with factored models that used
a fixed patch size (4×4, 8×8, 16×16, 32×32). Each
model was trained on each game for 10 million frames,
using a policy that selected actions uniformly at ran-
dom and then executed them for k frames, where k
was also chosen uniformly at random from the set
K := {4, 8, 12, 16}. This policy was designed to visit
more interesting parts of the state space and thus gen-
erate more complex trajectories. The models received
a new game screen every fourth frame, yielding 15 time
steps per second of play. Predicting at higher frame
rates was found to be easier, but led to qualitatively
similar results while requiring more wall-clock time per
experiment.

5.2. Results

After training, we evaluated the models’ ability to pre-
dict the future conditional on action sequences. This
evaluation phase took place over an additional 8000
frames, with action sequences again drawn by select-
ing actions uniformly at random and executing them
for k ∈ K frames. At each time step t, each model
was asked to predict 90 steps ahead and recorded how
many frames were perfectly generated. Predictions at
t+k were thus made using the true history up to time
t and the k − 1 already sampled frames.

Table 1 summarizes the result of this evaluation.
Which patch size best predicts game screens depends
on a number of factors, such as the size of in-game
objects, their frame to frame velocity and the pres-
ence of animated backgrounds. QTF achieves a level
of performance reasonably close to the best patch size,
above 95% in 13 out of 20 games. In some games,

Table 1. Average number of forward time steps correctly
predicted for the fixed-size and QTF models. The first
five games constitute our training set. Highest per-game
accuracy is indicated in bold blue.

Time Steps Correct
4×4 8×8 16×16 32×32 QTF

Asterix 0.748 1.17 1.11 1.44 1.44
Beam Rider ≈ 0 0.007 0.100 0.227 0.185
Freeway 0.303 4.64 2.21 1.63 3.20
Seaquest 0.019 0.427 0.157 2.39 1.85
Space Invaders 0.606 0.502 0.736 0.274 0.830

Amidar 13.0 12.9 13.1 13.3 13.4
Crazy Climber 0.347 0.758 0.650 2.50 2.66
Demon Attack 0.004 0.004 0.006 0.013 0.026
Gopher 0.048 0.375 0.747 2.27 2.28
Krull 0.014 0.083 0.482 1.14 0.233
Kung-Fu Master 2.87 3.17 3.35 3.57 3.53
Ms. Pacman 0.047 0.096 0.264 0.434 0.463
Pong 0.319 1.79 2.50 3.99 3.97
Private Eye 0.000 ≈ 0 0.001 0.010 0.003
River Raid 0.513 0.643 0.672 1.76 1.68
Star Gunner 0.041 0.417 0.659 1.48 0.802
Tennis 3.04 4.35 4.01 4.94 4.74
Up and Down 0.354 0.704 1.77 1.64 2.20
Wizard of Wor 0.957 0.946 0.961 0.520 0.519
Yars’ Revenge ≈ 0 0.003 0.005 0.005 0.008

QTF even improves on the performance of the best
fixed-size model. Ultimately, Theorem 1 ensures that
QTF will asymptotically achieve a prediction accuracy
comparable to the best decomposition available to it.

Sequential, probabilistic prediction algorithms
such as QTF are often evaluated based on
their n-step average logarithmic loss, defined as
1
n

∑n
i=1− log2 ξ(xi | ax<iai) for an environment model

ξ. This measure has a natural information theoretic
interpretation: on average, losslessly encoding each
percept requires this many bits. While counting the
number of correct future frames is a conservative
measure and is heavily influenced by the sampling
process, the logarithmic loss offers a more fine-grained
notion of predictive accuracy. As shown in Table 2,
our quad-tree factorization achieves significantly lower
per-frame loss than any fixed-size model. In view that
each frame contains 160 × 210 × 7 = 235, 200 bits of
data, our gains in Pong and Freeway – about 3 bits
per frame – are particularly important.

6. Discussion

The benefits of predicting observations using envi-
ronment model factors corresponding to larger image
patches are twofold. Large regular patterns, such as
the invaders in Space Invaders, can easily be repre-
sented as a single symbol. When using a base model

Bayesian Learning of Recursively Factored Environments

Table 2. Per-frame logarithmic loss for the fixed-size and
QTF models, averaged over the whole training sequence.
The first five games constitute our training set. The lowest
loss is indicated in bold blue.

Logarithmic Loss (Base 2)
4×4 8×8 16×16 32×32 QTF

Asterix 81.83 29.44 188.2 2166 17.77
Beam Rider 850.6 335.4 710.8 4059 68.63
Freeway 12.68 8.19 50.88 251.1 3.05
Seaquest 101.8 173.9 1328 7887 51.26
Space Invaders 161.3 129.5 678.2 8698 27.99

Amidar 35.74 36.58 168.1 815.9 9.95
Crazy Climber 205.5 161.0 446.9 2172 40.84
Demon Attack 716.9 1587 5502 19680 531.1
Gopher 72.85 28.24 66.02 608.9 9.97
Krull 615.4 1103 4025 15220 245.2
Kung-Fu Master 74.62 59.33 179.9 1012 20.87
Ms. Pacman 109.2 183.5 1053 6362 48.9
Pong 33.75 13.71 23.07 121.0 3.24
Private Eye 453.5 623.4 1922 7956 162.6
River Raid 298.5 256.5 1034 6055 77.35
Star Gunner 438.0 481.2 1980 10790 139.2
Tennis 178.5 290.7 945.6 4134 93.6
Up and Down 1461 2220 5104 14490 854.7
Wizard of Wor 134.3 81.98 277.9 1778 26.42
Yars’ Revenge 667.4 1251 3264 20810 493.3

such as CTS, which treats symbols atomically, sam-
pling from QTF is often faster as fewer symbols need
to be generated. Thus our quad-tree factorization pro-
duces a forward model of Atari 2600 games which is
both efficient and accurate.

In our experiments, we used Context Tree Switching
(CTS) models as our environment model factors. One
limitation of this approach is that CTS has no provi-
sion for partial symbol matches: altering a single pixel
within an image patch yields a completely new symbol.
This presents a significant difficulty, as the size of the
alphabet corresponding to F grows exponentially with
its nesting depth d. The results of Table 2 are symp-
tomatic of this issue: larger patch size models tend to
suffer higher loss. As our meta-algorithm is indepen-
dent of the choice of environment model factors, other
base models perhaps better suited to noisy inputs may
improve predictive accuracy, for example locally linear
models (Farahmand et al., 2009), dynamic bayes net-
works (Walsh et al., 2010), and neural network archi-
tectures (Sutskever et al., 2008).

7. Conclusion

In this paper, we introduced the class of recursively de-
composable factorizations and described an algorithm
that performs efficient Bayesian model averaging in a
reinforcement learning setting. We instantiated our

technique into a recursive quad-tree factorization of
two-dimensional image spaces which we used to learn
forward models of 160×210-pixel Atari 2600 games. To
the best of our knowledge, our QTF model is the first
to tackle observation spaces of this magnitude within
the model-based reinforcement learning setting. We
also expect that many existing algorithms can be im-
proved by an appropriate combination with QTF.

While our results show that QTF allows us to obvi-
ate choosing a factorization a priori, there remains the
question of how to best act given such a model of the
environment. Recently, Joseph et al. (2013) argued
that, when no member of the model class can repre-
sent the true environment, a mismatch arises between
model accuracy and model usefulness: the best policy
may not rely on the most accurate model. In the fu-
ture, we will be integrating our modeling techniques
with simulation-based search to further explore this
issue in Atari 2600 games.

A. Appendix

A.1. Proof of Equation 8

Proof. Along the lines of the argument used to prove
Lemma 2 in (Willems et al., 1995), we can rewrite

ξdF (x1:n | a1:n) =
∑

f∈Cd(F)

2−Γd(f)ρf (x1:n | a1:n)

=
∑

f∈Cd(F)

2−Γd(f)
∏

τ∈T (f)

πτ (xτ1:n | a1:n)

=
1

2
πF (xF1:n | a1:n) +

∑
f∈Cd\{F}

2−Γd(f)
∏

τ∈T (f)

πτ (xτ1:n | a1:n)

=
1

2
πF (xF1:n | a1:n) +

1

2

∑
f1∈

Cd−1(F1)

· · ·
∑

fdim(F)∈
Cd−1(Fdim(F))

dim(F)∏
i=1

2−Γd−1(fi)
∏

τ∈T (fi)

πτ (xτ1:n | a1:n)

=
1

2
πF (xF1:n | a1:n) +

1

2

dim(F)∏
i=1

 ∑
f∈Cd−1(Fi)

2−Γd−1(f)ρf (x1:n | a1:n)


=

1

2
πF (xF1:n | a1:n) +

1

2

dim(F)∏
i=1

ξd−1
Fi

(x1:n | a1:n).

References

Aji, Srinivas M. and McEliece, Robert J. The Generalized
Distributive Law. IEEE Transactions on Information

Bayesian Learning of Recursively Factored Environments

Theory, 46(2):325–343, 2000.

Asmuth, John and Littman, Michael L. Learning is Plan-
ning: Near Bayes-optimal Reinforcement Learning via
Monte-Carlo Tree Search. In Proc. of the Conference on
Uncertainty in Artificial Intelligence, 2011.

Bellemare, Marc G., Naddaf, Yavar, Veness, Joel, and
Bowling, Michael. Investigating Contingency Awareness
Using Atari 2600 Games. In Proc. of the 26th AAAI
Conference on Artificial Intelligence, 2012a.

Bellemare, Marc G., Veness, Joel, and Bowling, Michael.
Sketch-Based Linear Value Function Approximation. In
Advances in Neural Information Processing Systems 25,
2012b.

Bellemare, Marc G., Naddaf, Yavar, Veness, Joel, and
Bowling, Michael. The Arcade Learning Environment:
An Evaluation Platform for General Agents. Journal of
Artificial Intelligence Research (JAIR), to appear, 2013.

Cesa-Bianchi, Nicolo and Lugosi, Gabor. Prediction,
Learning, and Games. Cambridge University Press, New
York, NY, USA, 2006.

Diuk, Carlos, Li, Lihong, , and Leffler, R. Bethany. The
Adaptive k-Meteorologists Problem and Its Application
to Structure Learning and Feature Selection in Rein-
forcement Learning. In Proc. of the 26th International
Conference on Machine learning, 2009.

Doshi-Velez, Finale. The Infinite Partially Observable
Markov Decision Process. In Advances in Neural In-
formation Processing Systems 22, 2009.

Farahmand, Amir massoud, Shademan, Azad, Jägersand,
Martin, and Csaba Szepesvári. Model-based and Model-
free Reinforcement Learning for Visual Servoing. In
Proc. of the IEEE International Conference on Robotics
and Automation, 2009.

Grünwald, Peter D. The Minimum Description Length
Principle (Adaptive Computation and Machine Learn-
ing). The MIT Press, 2007.

Guez, Arthur, Silver, David, and Dayan, Peter. Efficient
Bayes-Adaptive Reinforcement Learning using Sample-
based Search. In Advances in Neural Information Pro-
cessing Systems 25, 2012.

Hausknecht, Matthew, Khandelwal, Piyush, Miikku-
lainen, Risto, and Stone, Peter. HyperNEAT-GGP: A
HyperNEAT-based Atari general game player. In Proc.
of the Genetic and Evolutionary Computation Confer-
ence, 2012.

Hutter, Marcus. Universal Artificial Intelligence: Se-
quential Decisions Based on Algorithmic Probability.
Springer, 2005.

Joseph, Joshua, Geramifard, Alborz, Roberst, John W.,
How, Jonathan P., and Roy, Nicholas. Reinforcement
Learning with Misspecified Model Classes. In Proc. of
the IEEE International Conference on Robotics and Au-
tomation, 2013.

Kaelbling, Leslie Pack, Littman, Michael L., and Cassan-
dra, Anthony R. Planning and Acting in Partially Ob-
servable Stochastic Domains. Artificial Intelligence, 101:
99–134, 1998.

Kocsis, Levente and Szepesvári, Csaba. Bandit Based
Monte-Carlo Planning. In Proc. of the European Con-
ference on Machine Learning, 2006.

Naddaf, Yavar. Game-Independent AI Agents for Playing
Atari 2600 Console Games. Master’s thesis, University
of Alberta, 2010.

Nguyen, Phuong, Sunehag, Peter, and Hutter, Marcus.
Context Tree Maximizing Reinforcement Learning. In
Proc. of the 26th AAAI Conference on Artificial Intelli-
gence, pp. 1075–1082, Toronto, 2012. AAAI Press. ISBN
978-1-57735-568-7.

Poupart, Pascal. Model-based Bayesian Reinforcement
Learning in Partially Observable Domains. In Proc. of
the International Symposium on Artificial Intelligence
and Mathematics, 2008.

Puterman, Martin L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., 1994.

Ross, Stéphane and Pineau, Joelle. Model-Based Bayesian
Reinforcement Learning in Large Structured Domains.
In Proc. of the Conference on Uncertainty in Artificial
Intelligence, 2008.

Silver, David and Veness, Joel. Monte-Carlo Planning in
Large POMDPs. In Advances in Neural Information
Processing Systems 23, 2010.

Silver, David, Sutton, Richard S., and Müller, Martin.
Sample-based Learning and Search with Permanent and
Transient Memories. In Proc. of the 25th International
Conference on Machine Learning, 2008.

Silver, David, Sutton, Richard S., and Müller, Martin.
Temporal-Difference Search in Computer Go. Machine
Learning, 87(2):183–219, 2012.

Sutskever, Ilya, Hinton, Geoffrey, and Taylor, Graham.
The Recurrent Temporal Restricted Boltzmann Ma-
chine. In Advances in Neural Information Processing
Systems 21, 2008.

Sutton, Richard S. Dyna, an Integrated Architecture for
Learning, Planning, and Reacting. SIGART Bulletin, 2
(4):160–163, 1991.

Veness, Joel and Hutter, Marcus. Sparse Sequential Dirich-
let Coding. ArXiv e-prints, 2012.

Veness, Joel, Ng, Kee Siong, Hutter, Marcus, and Silver,
David. Reinforcement Learning via AIXI Approxima-
tion. In Proc. of the AAAI Conference on Artificial In-
telligence, 2010.

Veness, Joel, Ng, Kee Siong, Hutter, Marcus, Uther,
William, and Silver, David. A Monte-Carlo AIXI Ap-
proximation. Journal of Artificial Intelligence Research
(JAIR), 40(1), 2011.

Veness, Joel, Ng, Kee Siong, Hutter, Marcus, and Bowling,
Michael. Context Tree Switching. In Proc. of the Data
Compression Conference (DCC), 2012.

Walsh, Thomas J., Goschin, Sergiu, and Littman,
Michael L. Integrating Sample-based Planning and
Model-Based Reinforcement Learning. In Proc. of the
AAAI Conference on Artificial Intelligence, 2010.

Willems, F. and Tjalkens, T.J. Complexity Reduction of
the Context-Tree Weighting Algorithm: A Study for
KPN Research. EIDMA Report RS.97.01, 1997.

Willems, Frans M.J., Shtarkov, Yuri M., and Tjalkens,
Tjalling J. The Context Tree Weighting Method: Basic
Properties. IEEE Transactions on Information Theory,
41:653–664, 1995.

